تحلیل محتوایی مقالات علمی با استفاده از متن‌کاوی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،دانشکده‌ مهندسی صنایع دانشگاه یزد،

2 استادیار گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه یزد.

چکیده

در این تحقیق، از تکنیک متن­کاوی به‌منظور آنالیز محتویات مقالات علمی و همچنین ارائه­ی مدلی برای دسته­بندی مقالات علمی (دسته­ی اول، مقالاتی که معیارهای از پیش تعیین‌شده‌ای را رعایت کرده و دسته­ی دوم، مقالاتی که آن معیارها را رعایت نکرده­اند) استفاده شده است. در همین راستا، در تحقیق پیش ­رو، از نظر خبرگان به‌منظور استخراج معیارهایی کیفی بهره برده شده که درنهایت 15 معیار نهایی به دست آمده است، در مرحله­ی بعد تعداد 18 مقاله­ی علمی در زمینه­ مهندسی صنایع توسط اساتید دانشگاه و دانشجویان مقطع دکتری در این رشته (با توجه به 15 معیار استخراج‌شده) مورد بررسی قرار گرفته و بر اساس نظر این افراد نتایج سودمندی به دست آمده است، در نهایت از مدل­های دسته­بندی مختلفی برای طبقه­بندی مقالات استفاده شده و با استفاده از تکنیک­هایی مشخص، سعی شده که در این مدل­ها بهبودی حاصل شود.
هدف از این پژوهش، به دست آوردن معیارهایی کلی برای تحلیل محتوایی مقالات، ارائه­ی مدل­های مختلف دسته­بندی برای طبقه­بندی مقالات علمی بر اساس معیارهای از پیش تعیین‌شده و انتخاب بهترین مدل است. در نهایت، نتیجه­ی این پژوهش به دست آوردن 15 معیار کلی برای تحلیل محتوایی مقالات و به دست آوردن مدل­های دسته­بندی مختلف با دقت قابل قبول است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Content Analysis of Science Paper’s by Using Text Mining

نویسندگان [English]

  • Bahman Hatami Naghani 1
  • Masoud Abessi 2
1 MSc Student, Department of Industrial Engineering, University of Yazd
2 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, University of Yazd
چکیده [English]

 
In this research, text mining technique has been applied to analyze the content of scientific articles, also to represent a model for classifying the articles (the first class is comprised of the articles observing predetermined criteria's, and the second one consists of those inattentive). To meet these objectives, in the current research, the experts' ideas have been used to elicit qualitative criteria, and 15 final criteria's were ultimately picked up. In the next phase, 18 scientific articles in industrial engineering scope were studied by university professors and PHD students (with regard to 15 elicited criteria), and beneficial results were derived. In the end, different classification models were applied to classify the articles and with the aid of some specific techniques, we tried to improve these models. Finally, we compare the models to choose the best one.
    The aim of this research is to get some general criteria for analyzing the content of articles, propose different classification models for classifying the scientific articles whit regard to predetermined criteria's, and choose the best model. Finally, as a result, 15 final criteria's also different classification models with appropriate accuracy, were ultimately picked up. 

کلیدواژه‌ها [English]

  • Scientific articles
  • general criteria's
  • Analysis
  • Text Mining
  • classification model
 

صالحی صدقیانی، جمشید و همکاران. ۱۳89«بررسی عوامل مقاومت در برابر سرویس پرداخت موبایل با استفاده از روش­های داده­کاوی». فصلنامه مطالعات مدیریت فناوری اطلاعات. سال اول، شماره 2، زمستان 1391، صفحات 147 تا 162.

سن گوتیا، آی. ان (تابستان و پاییز ۱۳۷۲) «مروری بر کتاب‌سنجی، اطلاع‌سنجی، علم‌سنجی و کتابخانه سنجی». ترجمه مهر دخت وزیر پور کشمیری (گلزاری)، اطلاع‌رسانی، دوره دهم (جدید) ۲ و ۳: ۳۸ـ۵۸.

حری، عباس. ۱۳۷۲ «مروری بر اطلاعات و اطلاع‌رسانی». تهران. دبیرخانه هیئت‌امنای کتابخانه‌های عمومی کشور، نشر کتابخانه.

Wang, M. Y. Fang, S. C. & Chang, Y. H. (2015). Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels. Technological Forecasting and Social Change, 92, 182-195.

Mingers, J. & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1-19.

Jusoh, S. & Alfawareh, H. M. (2009). Agent-based knowledge mining architecture. In Proceedings of the 2009 International Conference on Computer Engineering and Applications, IACSIT (pp. 602-606.

Karanikas, H. & Theodoulidis, B. (2002). Knowledge discovery in text and text mining software. Centre for Research in Information Management, Department of Computation.

Alwidian, S. A. A. Bani-Salameh, H. A. & Alslaity, A. A. N. (2015). Text data mining: a proposed framework and future perspectives. International Journal of Business Information Systems, 18(2), 127-140.

Chiwara, M. Al-Ayyoub, M. Hossain, M.S. Gupta, R. (2006). Data Mining Concepts and Techniques Association Rule Mining, State University of New York, CSE 634, Chapter 8.

Özyurt, Ö. & Köse, C. (2010). Chat mining: Automatically determination of chat conversations’ topic in Turkish text based chat mediums. Expert Systems with Applications, 37(12), 8705-8710.

Cheng, N. Chandramouli, R. & Subbalakshmi, K. P. (2011). Author gender identification from text. Digital Investigation, 8(1), 78-88.

Al-Zaidy, R. Fung, B. C. Youssef, A. M. & Fortin, F. (2012). Mining criminal networks from unstructured text documents. Digital Investigation, 8(3), 147-160.

Moon, S. & Song, R. (2015). The roles of cultural elements in international retailing of cultural products: An application to the motion picture industry. Journal of Retailing, 91(1), 154-170.