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Abstract

registration systems depend on manual ch
filters that only look at how similar the names

in natural language proce arch engines, text
summarization, and evaRsen In this study, there’s a
new deep learning checking how well a proposed
company name matChes, i
AriaBERT moﬁl to turn ames into contextual vectors, and
FastTexttodot

cosine si OUGE metrics. To top it off, DBSCAN
clustering ether company names that relate to similar
activities. The results speak for themselves: the model hit ROUGE-1,
ROUGE-2, and RQUGE-L scores of 0.7623, 0.7413, and 0.7982. The

accuracy landed 0.8512, with a recall of 0.8317. The name-
clustering functi@n” of the method also lets it recommend similar-
sounding names for companies based on their area of activity.
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1. Introduction
Digital tech has exploded in the last few years, and with it, we’re
swimming in unstructured text, think emails, reports, web pages, you
name it. Businesses now lean hard on text processing and semantic
analysis to make sense of all this data. Now, let’s talk company names.
Picking the right name is a huge step for any business or nonprofit. The
name has to fit the field you’re working in truly. Right now, most
registration systems check proposed names either by hand or with rule-
based tools. They mostly look for word overlap or make sure the name
follows the rules. Because of this, tons of names ggt rejected. It’s slow
and creates extra work for everyone. And #estly, even though
matching a company name to its actual business is\nportant, there’s
no smart, automated way to check if the name really fit§ That’s where
this study comes in.

We’re rolling out an Al-driven method
well a proposed company name match
semantically, not just on the surface. Using text i nd deep
learning, our approach aims to make th faster and
smarter, cut down on bad registrations, and hel ion systems
make better calls.

2. Theoretical Foundati@ips a evelopment

Semantic similarity iSgg big opiey language processing.
Basically, it’s about uch two pieces of text, words,
phrases, or wh ean the same thing.

Neural networ lutional, and now especially
uance by paying attention to context
stretches of text. For Persian, these
crucial because the language is
and there aren’t big annotated datasets lying
around .Ot > like ParsBERT and FaBERT, underscore how
much differencéygood, clean pretraining data makes, especially for
short or casual texts (Masumi et al., 2024; Zareshahi et al., 2024).
Given all this, this study starts from the idea that combining contextual
embeddings wit ntion-based sequence models can do a better job
of matching company names with what these companies say they do.
So, the main hypothesis is this:

H1: A hybrid approach that mixes contextual embeddings with
attention mechanisms significantly boosts the accuracy of detecting
whether company names actually fit their stated fields of activity.

3. Materials & Methods

This study takes an applied research approach, focusing on a real-
world case: making company name registration faster and more
accurate.
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They worked with both approved and rejected company names, along
with the fields of activity those companies declared, which gave them
plenty of material for analyzing meaning. The model itself has two
main parts. First, it looks at the meaning of the company name.

Second, it checks how that name lines up with the declared field of
activity. The whole point is to see if these two pieces of text actually
fit together, which helps people make better decisions when registering
new companies or institutions. As you can see in Figure 1, the model
compares the company name and the act|V|ty field fvectors using cosme

Then, they use an attention mechanism to hig
words. After that, they run everythin
i vector for
each activity. If the score’s high enough above reshold, the
name is considered a good t for the d 2d , S0 it’s accepted.
If not, it’s rejected. Fina gorithm to cluster
company names based 0 in meaning.

4. Results & Dlscussm
FastText to create embeddings.

For the activitydescripti
To check how t , | relied on cosine similarity and
ics. OUGE-1, ROUGE-2, and ROUGE-

y picked up on deeper semantic meaning.
ar, scored high on precision, recall, and F1 for
both company ames and activity descriptions. Also clustered the
company name Vgctors using DBSCAN, with a radius of 0.5 and at
least five sample$per cluster. To make sure the model’s reliable, I
ran a human ev ion following SemEval standards on 200 random
samples. Experts agreed with each Most of the time, Cohen’s Kappa
came in at 0.87. Even better, model-generated similarity scores
matched expert judgments with a correlation of 0.93.

5. Conclusion

A company’s name isn’t just a tag you slap on a business. Sometimes
it tells you right away what the company does, other times it’s just a
catchy word with no clear meaning. In this study, we built an Al system
to see how well a proposed company name matches up with what the
business actually does.
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When we compared these scores to the opinions of real company
registration experts, the system matched them 93% of the time. That’s
a solid result—it shows the Al is doing what it’s supposed to. Digging
a bit deeper, ROUGE-L ended up being the best measure compared to
ROUGE-1 and ROUGE-2.

Now, there are some limits. The system only works with Persian-
language data from the national company registration system, and it
just focuses on matching names to activity fields. Looking ahead, we
want to try out online learning and more adw¥anced transformer
models. Al is moving fast, after all. J

Keywords: Company registration, Cosine similarityj\Reep learning,

Semantic relation, Text mining. “
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