Management approaches in the field of smart
seyed Mohsen Safavi koohsareh; seyed amin hosseini sano; Amirhossein Mohajerzadeh
Abstract
The primary objective of mobile network operators is arguably to maximize their efficiency. Beyond operational and investment costs, maximizing the utilization of available resources can help them achieve this goal. To this end, operators offer discounted data plans during off-peak hours to encourage ...
Read More
The primary objective of mobile network operators is arguably to maximize their efficiency. Beyond operational and investment costs, maximizing the utilization of available resources can help them achieve this goal. To this end, operators offer discounted data plans during off-peak hours to encourage users to utilize the network during these times. These packages are typically based on the average traffic load across the entire network at different times of the day. However, they often overlook the fact that traffic patterns can vary significantly across different population areas within a city at various times. In this paper, different population areas are automatically identified using clustering based on traffic patterns. By identifying these areas and considering the traffic patterns specific to each area, the allocation of appropriate internet packages for users, based on the regions they frequent, is analyzed and discussed. Additionally, other potential applications of this clustering method for offering various services are presented, followed by a conclusion
Data, information and knowledge management in the field of smart business
Mohammad Kazemi; Mohammad Ali Keramati; Mehrzad Minooie
Abstract
The effort of this article is to solve one of the main problems in the field of banking, which is closely related to the field of information technology. The combination of the management discussion of this topic with the field of information technology will be one of the important topics in the field ...
Read More
The effort of this article is to solve one of the main problems in the field of banking, which is closely related to the field of information technology. The combination of the management discussion of this topic with the field of information technology will be one of the important topics in the field of information technology management. The main goal of this article is the clustering of bank customers.At first, all customer characteristics were extracted from the bank's database, which was randomly extracted for 900,000 customers, which will be provided as input to the proposed method of this article. All the characteristics of these customers were extracted and 10 characteristics (except four characteristics of the LRFM method) were listed using the opinions of experts. The proposed method should be able to choose among these 10 features for clustering customers, which results in more resolution in clustering. Due to the high number of cases of this problem, it is not possible to do it manually, and the proposed method tries to provide a separate model for clustering for the customers of each bank by examining different cases. Also, the problem of choosing the right value for the number of clusters in the K-means method is solved by the method proposed in this article. The results show that it is better than the basic RFM and LRFM methods.Keywords: relationship management with bank customers, clustering, RFM model, LRFM model, particle swarm algorithm, K-means method.
Mohammad Kazemi; Mohammad Ali Keramati; Mehrzad Minooie
Abstract
AbstractClustering is a common method for analyzing various data that is used in many fields, including statistical pattern recognition, machine learning, data mining, image analysis, and bioinformatics. Clustering The process of grouping objects similar to different groups, or more precisely, partitioning ...
Read More
AbstractClustering is a common method for analyzing various data that is used in many fields, including statistical pattern recognition, machine learning, data mining, image analysis, and bioinformatics. Clustering The process of grouping objects similar to different groups, or more precisely, partitioning and dividing a set of data, into separate subcategories, the main point of which is not to be specific. The number of classes is in clustering. One of its most widely used uses is in the field of data, the clustering of which is performed by experts in taste. Bank customer clustering has been a challenge from the beginning, and it has been difficult to find consensus among experts to select a feature for grouping.This dissertation seeks to provide a solution for dynamic clustering of bank customers. This clustering will be based on a genetic algorithm and will decide on the number of categories, members of each category, and the similarity criteria used. The dynamics of the method are based on the improvement of the LRFM method using the genetic algorithm. In other words, the genetic algorithm will try to find different information fields about the bank's customers in the database; Put the right fields next to the features used in the LRFM method and get better results for clustering the bank's customers. This process leads to the determination of the criterion of similarity of one customer with another customer and the degree of similarity between them.
Ehsan Kashi; Mehri Shahriari
Abstract
News and rumors about the prevalence of corona virus on social media have a significant impact on people. The aim of this study is to examine the topics discussed by people about corona disease in social media from the beginning of corona prevalence to the present day. The research data were collected ...
Read More
News and rumors about the prevalence of corona virus on social media have a significant impact on people. The aim of this study is to examine the topics discussed by people about corona disease in social media from the beginning of corona prevalence to the present day. The research data were collected from people’s comments in posts related to Corona News on Instagram and analyzed using the method of text mining and clustering. Based on the results of the research, the topics of discussion of the citizens were divided into 10 clusters, which are: Lack of sanitary equipment, lack of attention to quarantine, news and rumors, mental condition, information about symptoms, prevention, control and treatment, government and public actions, lack of personal hygiene, death rate in patients and burial, closure of educational activities And economic problems. Then they were compared with the issues in December and January, when some issues such as access to vaccines, hourly traffic restrictions and the mutated virus were added to the concerns of the people, and some of them were addressed by government measures.
Sina Raeesi Vanani; Iman Raeesi Vanani; Mohammad Taghi Taghavifard
Abstract
Educational performance measurement through the identification and analysis of data extracted from learners’ activities can effectively result in the improvement of educational performance. In this Article, data of international learners was analyzed based on design science methodology and using ...
Read More
Educational performance measurement through the identification and analysis of data extracted from learners’ activities can effectively result in the improvement of educational performance. In this Article, data of international learners was analyzed based on design science methodology and using data mining methods. In this regard, domestic and international research has been reviewed over the past decade and the academic and non-academic data of students were clustered into three categories: family, supportive, and academic behavior. After the validation of algorithms outputs and determining the number of optimal clusters in each category, clusters were labeled and analyzed. Analysis of labels presents the experience of success or failure of students and roots of effective performance in each cluster, and the labeling method proposed is a new and applicable method in most of the learning centers for segmenting and formulating the educational performance.
Mohamammad Ali KhatamiFirouzabadi; MohammadTaghi TaghaviFard; Khalil Sajjadi; Jahanyar Bamdad Soufi
Abstract
Knowing customer behavior patterns, clustering and providing proper services to the customers is one of the most important issues for the banks.In this research, 5 criteria of each customer, including Recency, Frequency, Monetary, Loan and Deferred, were extracted from a bank database during a fiscal ...
Read More
Knowing customer behavior patterns, clustering and providing proper services to the customers is one of the most important issues for the banks.In this research, 5 criteria of each customer, including Recency, Frequency, Monetary, Loan and Deferred, were extracted from a bank database during a fiscal year, and then customers were clustered using K-Means algorithm. Then, a multi-objective model of bank service allocation was designed for each of the clusters. The purpose of the designed model was to increase customer satisfaction, reduce costs, and reduce the risk of allocating services. Given the fact that the problem does not have an optimal solution, and each client feature has a probability distribution function, simulation was used to solve the models. To determine the optimal solution, Simulated Annealing algorithm was used to create neighboring solutions and consequently a simulation model was implemented. The results showed a significant improvement in the current situation. In this research, we used Weka and R-Studio software for data mining and Arena for simulation and optimization
Mohammad’reza Gholamian; Azimeh Mozafari
Abstract
Management and evaluation of valuable customers, is one of the most important banking factors to reduce costs and increase profitability. In recent decades, many researchers have studied on the analysis of the customer attributes to evaluate value of them using data mining techniques and decision tree ...
Read More
Management and evaluation of valuable customers, is one of the most important banking factors to reduce costs and increase profitability. In recent decades, many researchers have studied on the analysis of the customer attributes to evaluate value of them using data mining techniques and decision tree is one of the most widely used data mining algorithms in the field. Since this algorithm for built tree, considers only one attribute at a time to test each node and ignores the dependency between attributes, therefore, required maximum memory is increased. To solve this problem, in this research a method is proposed to improve the decision tree using neural network to explore the dependency between the attributes based on reduction in required maximum memory that is used based on RFM model to predict customer values. Results show that the proposed method using dependencies between attributes will predict the new customer values by less maximum memory compare to the basic method