Document Type : Research Paper

Authors

1 Phd Student, Department of Industrial Management, Central Tehran Branch, Islamic Azad University,Tehran .iran

2 Associate professor, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran.iran

3 Assistant professor, Department of Industrial Management,Central Tehran Branch, Islamic Azad University,Tehran.iran

Abstract

Abstract

Clustering is a common method for analyzing various data that is used in many fields, including statistical pattern recognition, machine learning, data mining, image analysis, and bioinformatics. Clustering The process of grouping objects similar to different groups, or more precisely, partitioning and dividing a set of data, into separate subcategories, the main point of which is not to be specific. The number of classes is in clustering. One of its most widely used uses is in the field of data, the clustering of which is performed by experts in taste. Bank customer clustering has been a challenge from the beginning, and it has been difficult to find consensus among experts to select a feature for grouping.
This dissertation seeks to provide a solution for dynamic clustering of bank customers. This clustering will be based on a genetic algorithm and will decide on the number of categories, members of each category, and the similarity criteria used. The dynamics of the method are based on the improvement of the LRFM method using the genetic algorithm. In other words, the genetic algorithm will try to find different information fields about the bank's customers in the database; Put the right fields next to the features used in the LRFM method and get better results for clustering the bank's customers. This process leads to the determination of the criterion of similarity of one customer with another customer and the degree of similarity between them.

Keywords

تقوی فرد، م. خواجوند، س. (1392)، "بخش بندی خوشه ای مشتریان بانک (مورد مطالعه: بانک صادرات ایران) "، کاوش های مدیریت بازرگانی، 5 (9)، 64-39.doi: 20.1001.1.2645386.1392.5.9.3.7
خدابنده لو، س. نیک نفس، ع. قاضی زاده، ف. (1394)، "بررسی مزایا، معایب و نحوه کاربرد RFM در ارزیابی وفاداری مشتری"، دومین همایش ملی پژوهش های کاربردی در علوم کامپیوتر و فناوری اطلاعات.
دهقان، ن. زارع، آ. پیوندی، پ. هادی زاده، م. (1391)،"استفاه از روش خوشه بندی K-mean جهت گروه بندی فرم بدن"، هشتمین کنفرانس ملی مهندسی نساجی ایران.
سعدالهی اسرمی، ن. سلاجقه، ا. (1394)،"مقایسه داده کاوی متدولوژی CRISP و متدولوژی SEMMA"، دومین کنفرانس بین المللی پژوهش در علوم و تکنولوژی.
سهرابی، ب. خانلری، ا. (1386)، "سنجش ارزش دوره زندگی مشتری(CLV)بر اساس مدلRFM"، بررسی های حسابداری و حسابرسی، 14 (47)، 20-7..
عبدالمنافی، س. نخعی، م. پورجمالی، ف. (1394). "مدیریت روابط با مشتری"، کنفرانس بین المللی پژوهش های نوین در مدیریت و مهندسی صنایع.
فتاحی، س. ربیعی، م.( 1399) ، "استفاده از مدل LRFM برای خوشه بندی کاربران بر اساس تحلیل رفتار جست و جو (مورد مطالعه: پایگاه اطلاعات علمی ایران (گنج)"، پژوهش نامه پردازش و مدیریت اطلاعات، 36 (2)، 442-419.
قنبری، ر. مهری، ب. (1388)،"آشنایی با الگوریتم ژنتیک"، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شریف، دانشکده ریاضی.
مصلحی، ن. کفاش پور، آ. ناجی عظیمی، ز. (1393)، "استفاده از مدل LRFM برای بخش بندی مشتریان بر اساس ارزش چرخه عمر آن ها"، پژوهش های مدیریت عمومی، 7 (25)، 140119.
 References
Azevedo, A. I. R. L. , Santos, M. F.2008, “Kdd, Semma And Crisp-Dm: A Parallel Overview”, Iadis European Conference On Data Mining, Amsterdam, The Netherlands, July 24-26, 2008. Proceedings
Ghosal, A. , Nandy, A. , Das, A. K. , Goswami, S. , Panday, M. ,2020, “A Short Review On Different Clustering Techniques And Their Applications”, Technology In Modelling And Graphics, Doi:  10.1007/978-981-13-7403-6_9
Hughes, A. M., 2004, "Boosting Response With Rfm", Marketing Tools
Lakshmanaprabu, S. K. , Shankar, K. , Gupta, D. , Khanna, A. , Rodrigues, J. J. , Pinheiro, P. R. , De Albuquerque, V. H. C. ,2018, “Ranking Analysis For Online Customer Reviews Of Products Using Opinion Mining With Clustering”, Complexity, (Article Id 3569351):1-9, Doi:  10.1155/2018/3569351
Marisa, F. , Ahmad, S. S. S. , Yusof, Z. I. M. , Hunaini, F. , Aziz, T. M. A. 2019, “Segmentation Model Of Customer Lifetime Value In Small And Medium Enterprise (Smes) Using K-Means Clustering And Lrfm Model”, International Journal Of Integrated Engineering, 11(3) , Doi 10.30880/Ijie.2019.11.03.018
Mirjalili, S. , Thinsungnoena, T. 2019, “Genetic Algorithm. In Evolutionaryalgorithms And Neural Networks”, Springer, Cham, Doi.Org/10.1007/978-3-319-93025-1
Niloy, N. H. , Navid, M. A. I. ,2018, “Naïve Bayesian Classifier And Classification Trees For The Predictive Accuracy Of Probability Of Default Credit Card Clients”,American Journal Of Data Mining Knowledge Discovery, 3 (1), 1-12. Doi:  10.11648/J.Ajdmkd.20180301.11
Palaniappan, S. , Mustapha, A. Foozy, C. F. M. Atan, R. , Navid, S. , 2017, “Customer Profiling Using Classification Approach For Bank Telemarketing”, International Journal Of Computer Vision, 1 (4-2), 214- 217, Doi:  10.30630/Joiv.1.4-2.68
Patil, P. S. , Dharwadkar, N. V. ,2017, “Analysis Of Banking Data Using Machine Learning”,In International Conference On I-Smac (Iot In Social, Mobile, Analytics And Cloud) , Doi: 10.1109/I-Smac.2017.8058305
Petrovic. S., 2006, "A Comparison Between The Silhouette Index And The Davies-Bouldin Index In Labelling Ids Clusters",In Proceedings Of The 11th Nordic Workshop Of Secure It Systems, Corpus Id: 14657641
Vergani, A. A. , Binaghi, E. , Niloy, A. , Petrovic, H. , 2018, “A Soft Davies-Bouldin Separation Measure”,In 2018 Ieee International Conference On Fuzzy Systems (Fuzz-Ieee) , Doi: 10.1109/Fuzz-Ieee.2018.8491581
Wei, J. T. , Lin, S. Y. , & Wu, H. H., 2010, “A Review Of The Application Of Rfm Model”, African Journal Of Business Management 4(19):4199-4206
Yang, S. , Zhang, H. , 2018, “Comparison Of Several Data Mining Methods In Credit Card Default Prediction”,Intelligent Information Management, 10 (5), Doi: 10.4236/Iim.2018.105010 
Zhang, Y. , Bradlow, E. T. , Small, D. S. , Silhouette, G. ,2015,  “Predicting Customer Value Using Clumpiness: From Rfm To Rfmc”,Marketing Science, 34 (2), 179-307. Doi.Org/10.1287/Mksc.2014.0873
Zoeram A. A. , Karimi Mazidi, A. R.  2018, “New Approach For Customer Clustering By Integrating The Lrfm Model And Fuzzy Inference System”, Iranian Journal Of Management Studies, 11 (2), 351-378. Doi: 10.22059/Ijms.2018.242528.672839
References [in Persian]
Taghi Taghavifard, M., Khajvand, S., 2011, Customer Segmentationof Bank Customers (Case: Saderatbank Of Iran), Business Management Explorations, 5 (9), 64-39.Doi: 20.1001.1.2645386.1392.5.9.3.7 [In Persian]
Khodabandehl;, S.,. Nik Nafs, A. Ghazizadeh, F. 2014, "Study Of Advantages, Disadvantages And Application Of Rfm In Assessing Customer Loyalty", The Second National Conference On Applied Research In Computer Science And Information Technology. [In Persian]
Dehghan, N.,  Zare, A. Peyvandi, P. Hadizadeh, M. 2012, "Using K-Mean Clustering Method To Group Body Shape", 8th National Conference On Textile Engineering In Iran. [In Persian]
Sadollahi Asrami, N., Solajgheh, 2015, A., Comparison Of Data Mining Crisp Methodology And Semma Methodology", The Second International Conference On Research In Science And Technology. [In Persian]
Sohrabi, B. Khanlari, A. 2007, "Measuring The Value Of The Customer Life Cycle (Clv) Based On The Rfm Model", Accounting And Auditing Reviews, 14 (47), 20-7 .. [In Persian]
Abdolmanafi, S., Nakhai, M. Pourjamali, F. 2015, "Customer Relationship Management", International Conference On New Research In Industrial Management And Engineering[In Persian].
Fatahi, S., Rabiee, M., 2020, Using The Lrfm Model For User Clustering Based On Search Behavior Analysis (Case Study: Iran Scientific Database (Ganj)", Journal Of Information Processing And Management, 36 (2), 442-419. [In Persian]
Ghanbari, R. Mehri, B. 2009, "Introduction To Genetic Algorithm", Master Thesis, Sharif University Of Technology, Faculty Of Mathematics. [In Persian]
Moslehi, N., Kafashpour, A. Naji Azimi, Z. 2014, "Using The Lrfm Model To Segment Customers Based On The Value Of Their Life Cycle", Public Management Research, 7 (25), 140119. [In Persian]