Document Type : Research Paper

Authors

1 Postdoctoral Researcher, Faculty of Social Sciences and Economics, Al-Zahra University, Tehran.

2 Faculty Member, Department of Social Sciences and Economics, Al-Zahra University, Tehran.( Corresponding Author: a.khadivar@alzahra.ac.ir)

3 Ph.D. Student, Faculty of Compute Engineering, University of Isfahan, Isfahan.

Abstract

 
Nowadays, people use others' opinions on social networks for decision-making to purchase online products and services. Likewise, the companies which offer the products employ sentiment analysis of opinions of users and customers to adopt informed decisions and offer new products. Considering the high volume of the contextual data, conversion, and analysis of such data is a major challenge in e-commerce. Sentiment analysis is a modern approach in the extraction of opinions. The obtained information from sentiment analysis can have a considerable impact on the efficient selection of customers. In the present study, a model has been proposed for sentiment analysis of users' opinions for buying a cell phone in Digikala. This study is applicable to the objective aspect. The data includes users' opinions in Digikala. The statistical sample consists of opinions of cell phone users in Digikala. Supervised learning, as well as Python package, were utilized for analysis and implementation.  A model has been proposed for sentiment analysis of users' opinions. The results demonstrate that this model can classify users' opinions with an accuracy equal to 0.892. Similarly, the results reveal that users' opinions about ease of use, possibilities, and capabilities of the cell phone are positive and about purchase value to price, innovation, design and appearance, and quality of cell phones are negative. The proposed model can be implemented in e-commerce websites like Digikala and its output can be observed by users systematically. Finally, it can be led to inform decision-making for buyers and companies which offer products.
  
 
 
 

Keywords

بخشی زاده برج، ک.، حاجی جعفر، ع.، و نصیری، ح. (1397). ﺗﺮﺳﻴﻢ ﻧﻘﺸﺔ ذﻫﻨﻲ ﻣﺸﺘﺮﻳﺎن ﻓﺮوﺷﮕﺎه اﻳﻨﺘﺮﻧﺘﻲ دﻳﺠﻲ ﻛﺎﻻ ﺑﺎ اﺳﺘﻔﺎده از ﺗﻜﻨﻴﻚ اﺳﺘﺨﺮاج اﺳﺘﻌﺎره‌ای زالتمن (زیمت). مدیریت بازرگانی، 4972.
پیکری، ن.، یعقوبی، س.، و طاهری، ح. (1394). تحلیل احساسات در شبکه اجتماعی توییتر با تکنیک متن کاوی. کنفرانس بین المللی وب پژوهی. تهران: دانشگاه علم و فرهنگ.
حاج سید جوادی، ش.، و جلالی ، م. (1394). ارائه روشی کارا برای تجزیه و تحلیل احساسات توییت براساس ترکیب روش های یادگیری ماشین و شباهت معنایی. دومین کنگره بین المللی فن آوری.
خدیور، آ.، و عباسی، ف. (1398). متن کاوی با تمرکز بر تحلیل احساسات. تهران: نگاه دانش.
زمانی، م.، و سرخپور، ب. (1393). داده کاوی متون فارسی با نگرش مدیریت دانش. هفتمین کنفرانس ملی و اولین کنفرانس بین المللی مدیریت دانش. تهران.
صنیعی آباده، م.، و محمودی، س. (1394). داده کاوی کاربردی. تهران: نیاز دانش.
عباسی، ف.، سهرابی، ب.، مانیان، ا.، و خدیور، آ. (1396). ارائه مدلی جهت دسته بندی احساسات خریداران کتاب با استفاده از رویکرد ترکیبی. مطالعات مدیریت کسب و کار هوشمند، 94-65.
عبدی قویدل، ه.، وزیر نژاد، ب.، و بحرانی، م. (1391). برچسب زنی موضوعی متون فارسی. چهارمین کنفرانس فناوری اطلاعات و دانش. بابل.
لطفی آذری داریان، س.، و جاویدان، ر. (1395). استفاده از روشهای دادهکاوی به منظور تسهیل جستجو در موتورهای جستجوگر متنی. بیست و چهارمین کنفرانس برق ایران، (ص. 2817-2809). شیراز.
نجف زاده، م.، راحتی قوچانی، س.، و قائمی، ر. (1397). یک چارچوب نظارتی مبتنی بر لغت نامه وفقی خودساخت جهت تحلیل نظرات فارسی. پردازش علائم و داده ها، 101- 89.
الهی، ش.، قدس الهی، ا.، و ناجی، ح. (1393). ارائه مدل ترکیبی شبکه های عصبی با بهره گیری از یادگیری جمعی به منظور ارزیابی ریسک اعتباری. انجمن فناوری اطلاعات و ارتباطات ایران، 28-11.
Abdmanaf, S., Mustapha, N., Sulaiman, M., Azura Husin, N., Zainuddin, M., & Shafri, H. (2017). Majority Voting of Ensemble Classifiers to Improve Shoreline Extraction of Medium Resolution Satellite Images. Journal of Theoretical and Applied Information Technology, pp: 4394-4405.
Bhatt, A., Patel, A., Chheda, H., & Gawande, K. (2015). Amazon Review Classification and Sentiment Analysis. International Journal of Computer Science and Information Technologies, pp: 5107-5110.
Cambria , E., Havasi, C., & Hussain, A. (2012). SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis. Association for the Advancement of Artificial, pp:202-207.
Chakraborty , R. (2013). Domain Keyword Extraction Technique: A New Weighting Method Based on Frequency Analysis. Computer Science & Information Technology, pp: 109-118.
Dietterich, T. (2000). Ensemble methods in machine learning. Berlin, Heidelberg: Springer.
Fang, X., & Zhan, u. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(5), pp:1-14.
Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Intelligent Enterprise Technologies Laboratory.
Filho, P., & Pardo, T. (2013). NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages. Second Joint Conference on Lexical and Computational Semantics (*SEM)) pp: 568-572) .Association for Computational Linguistics.
Internet World Stats. (2019). Internet World Stats Usage and Population Statics. https://www.internetworldstats.com/top20.htm
Kannan, S., & Gurusamy, V. (2014). Preprocessing Techniques for Text Mining.
Liang, T.-P., Li, X., Yang, C.-T., & Wang, M. (2015). What in Consumer Reviews Affects the Sales of Mobile Apps: A Multifacet Sentiment Analysis Approach. International Journal of Electronic Commerce, pp:226-260.
Liu, B. (2012). Sentiment Analysis and Opinion Mining (Synthesis Lectures on Human Language Technologies). Williston: Morgan & Claypool Publishers.
Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press.
Mitchell, T. (2015). Generative and Discriminative Clasifiers: Naive bayes and logestic regression. T. Mitchell, Machine Learning.
Murugavalli, S., Bagirathan, U., Saiprassanth, R., & Arvindkumar, S. (2017). Feedback analysis using Sentiment Analysis for E-commerce. International Journal of Latest Engineering Research and Applications (IJLERA), pp: 84-90.
Pandey, A., Rajpoor, D., & Saraswat, M. (2017). Twitter sentiment analysis using hybrid cuckoo search method. Information Processing and Management, pp:764-769.
Popescu, M.-C., Balas, V., Perescu-Popescu, L., & Mastorakis, N. (2009). Multilayer Perceptron and Neural Networks. WSEAS Transactions on Circuits and Systems, 579-588.
Raghavan, V., & Gwang, J. (1989). A Critical Investigation of Recall and Precision as Measures of Retrieval System Performance. ACM Transactions on Information Systems, pp: 206-229.
Schonlau, M., & Guenther, N. (2016). Text Mining Using N-Grams. SSRN Electronic Journal.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, pp:427-437.
Suen, C., & Lam, L. (2000). Multiple Classifier Combination Methodologies. MCS 2000, LNCS 1857, 52-66.
Vidya, N., Fanany, M., & Budi, I. (2015). Twitter Sentiment to Analyze Net Brand Reputation of Mobile Phone Providers. Procedia Computer Science, pp:519-526.
Vijayarani, S., Ilamathi, M., & Nithya, M. (2015). Preprocessing Techniques for Text Mining - An Overview. International Journal of Computer Science & Communication Networks, pp: 7-16.
Wang, Z. (2017). The Evaluation of Ensemble Sentiment Classification Approach on Airline Services Using Twitter. Dublin: Dublin Institute of Technology.
Zhang, L., Hua, K., Wang, H., Qian, G., & Zhang, L. (2014). Sentiment Analysis on Reviews of Mobile Users. Procedia Computer Science, pp:458-465.
Zhang, Y., Ren, W., Zhu, T., & Faith, E. (2019). MoSa: A Modeling and Sentiment Analysis System for Mobile Application Big Data. Symmetry.
Zhao , L., Huang, M., Yao, Z., Su, R., Jiang, Y., & Zhu, X. (2016). Semi-Supervised Multinomial Naive Bayes for Text Classification by Leveraging Word-Level Statistical Constraint. Proceeding of the Thirtieth AAAI Conference on Artifical Intelligence, pp: 2877-2883.