Adriansyah, A., van Dongen, B. F., & van der Aalst, W. M. P. (2011, August). Conformance Checking Using Cost-Based Fitness Analysis. In Proceedings of the 2011 IEEE 15th International Enterprise Distributed Object Computing Conference. (pp. 55-64). IEEE Computer Society.
Alves de Medeiros, A. (2006). Genetic process mining. Ph.D. thesis, TU Eindhoven.
Alves de Medeiros, A., van Dongen, B. F., van der Aalst, W. M. P., & Weijters, A. J. M. M. (2005). Process Mining for Ubiquitous Mobile Systems: An Overview and a Concrete Algorithm. In: L. Baresi, S. Dustdar, H. Gall, & M. Matera (Eds.) Ubiquitous Mobile Information and Collaboration Systems (Springer, Berlin Heidelberg 2005).
Amelia Effendi, Y. & Sarno, R. (2020). Time-based α+ miner for modelling business processes using temporal pattern. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(1), 114-123.
Buijs, J. C. A. M., van Dongen, B. F.., & van der Aalst, W. M. P. (2012). On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery. In: R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, & I. Cruz (Eds.) On the Move to Meaningful Internet Systems: OTM 2012 (Springer, Berlin Heidelberg 2012).
Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst, W. M. P. (2014). Quality Dimensions in Process Discovery: The Importance of Fitness, Precision, Generalization and Simplicity. International Journal of Cooperative Information Systems, 23(01), 1-39.
Burattin, A. (2015). Heuristics Miner for Time Interval. In: A. Burattin (Ed.) Process Mining Techniques in Business Environments: Theoretical Aspects, Algorithms, Techniques and Open Challenges in Process Mining (Springer International Publishing, Cham 2015).
Burattin, A., Sperduti, A., & van der Aalst, W. M. P. (2012). Heuristics Miners for Streaming Event Data. Computing Research Repository abs/1212.6383.
He, Z., Du, Y., Wang, L., Qi, L., & Sun, H. (2018). An Alpha-FL Algorithm for Discovering Free Loop Structures From Incomplete Event Logs. IEEE Access, 6, 27885-27901.
Li, J., Liu, D., & Yang, B. (2007). Process Mining: Extending α-Algorithm to Mine Duplicate Tasks in Process Logs. In: K.-C. Chang, W. Wang, L. Chen, C. Ellis, C.-H. Hsu, A. Tsoi, & H. Wang (Eds.) Advances in Web and Network Technologies, and Information Management (pringer, Berlin Heidelberg 2007).
Li, W., Fan, Y., Liu, W., Xin, M., Wang, H. & Jin, Q. (2019) A Self-Adaptive Process Mining Algorithm Based on Information Entropy to Deal With Uncertain Data. IEEE Access, 7, 131681-131691.
Măruşter, L., Weijters, A. J. M. M., van der Aalst, W. M. P., & Van Den Bosch, A. (2006). A Rule-Based Approach for Process Discovery: Dealing with Noise and Imbalance in Process Logs. Data Mining and Knowledge Discovery, 13(1), 67-87.
Prodel, M., Augusto, V., Jouaneton, B., Lamarsalle, L. & Xie, X. (2018). Optimal Process Mining for Large and Complex Event Logs. IEEE Transactions on Automation Science and Engineering, 15(3), 1309-1325.
Prodel, M., Augusto, V., Xie, X.,Jouaneton, B., & Lamarsalle, L. (2015). Discovery of patient pathways from a national hospital database using process mining and integer linear programming. in 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, 1409-1414
Roci, A., & Davidrajuh, R. (2018). A Polynomial-Time Alpha-Algorithm for Process Mining. International Journal of Simulation-Systems, Science & Technology, 19(5),12.1-12.7.
Sarno, R. & Sungkono, K. (2019). A survey of graph-based algorithms for discovering business processes. International Journal of Advances in Intelligent Informatics, 5(2), 137-149.
Sun, H., Du, Y., Qi, L., & He, Z. (2019). A Method for Mining Process Models With Indirect Dependencies via Petri Nets. IEEE Access, 7, 81211-81226.
van der Aalst, W. M. P. (2014). Process Mining: Discovery, Conformance and Enhancement of Business Processes. Berlin Heidelberg: Springer.
van der Aalst, W. M. P., Adriansyah, A., & van Dongen, B. F. (2012). Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining and Knowledge Discovery, 2(2), 182-192.
van der Aalst, W. M. P., Weijters, A. J. M. M., & Maruster, L. (2004). Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128–1142.
van der Werf, J. M. E. M., van Dongen, B. F., Hurkens, C. A. J., & Serebrenik, A. (2008). Process Discovery Using Integer Linear Programming. In: van Hee K.M., Valk R. (eds) Applications and Theory of Petri Nets (Springer, Berlin Heidelberg 2008).
van Zelst, S. J., van Dongen, B. F., & van der Aalst, W. M. P. (2015). ILP-Based Process Discovery Using Hybrid Regions. In Proceedings of the ATAED 2015 workshop. (pp. 47–61). CEUR-WS.org.
van Zelst, S. J., van Dongen, B. F., van der Aalst, W. M. P., & Verbeek, H. M. W. (2018). Discovering workflow nets using integer linear programming. Computing, 100(5), 529-556.
vanden Broucke, S. K. L. M., & De Weerdt, J. (2017). Fodina: A robust and flexible heuristic process discovery technique. Decision Support Systems, 100, 109-118.
Vidgof, M., Djurica, D., Bala, S. & Mendling, J. (2020). Cherry-Picking from Spaghetti: Multi-range Filtering of Event Logs. In: S. Nurcan, I. Reinhartz-Berger, P. Soffer, J. Zdravkovic (Ed.) Enterprise, Business-Process and Information Systems Modeling (Springer International Publishing, Cham 2020).
Weijters, A. J. M. M., van der Aalst, W. M. P., & alves de Medeiros, A. (2006). Process Mining with the Heuristics Miner-algorithm. BETA Working Paper Series WP, 166, Eindhoven University of Technology.
Weijters, A. J. M. M., & Ribeiro, J. T. S. (2011, April). Flexible Heuristics Miner (FHM). In 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (pp. 310-317). IEEE.
Wen, L., van der Aalst, W. M. P., Wang, J., & Sun, J. (2007). Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery, 15(2), 145-180.
Wen, L., Wang, J., van der Aalst, W. M. P., Huang, B., & Sun, J. (2009). A novel approach for process mining based on event types. Journal of Intelligent Information Systems, 32(2), 163-190.