پیش‌بینی ارزش مشتریان جدید بانک بر مبنای مدل آر.اف.ام با استفاده از درخت تصمیم بهبودیافته در راستای کاهش حداکثر حافظه مورد نیاز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکترای مهندسی صنایع، عضو هیئت‌علمی دانشگاه علم و صنعت، تهران.

2  کارشناس ارشد مهندسی صنایع گرایش مدیریت سیستم و بهره‌وری، دانشگاه علم و صنعت، تهران

چکیده

یکی از مهم‌ترین فاکتورهای بانکداری در راستای کاهش هزینه‌ها و افزایش سودآوری، مدیریت و ارزیابی مشتریان با ارزش می‌باشد. در دهه‌های اخیر محققان بسیاری به تجزیه و تحلیل ویژگی‌های مشتریان به منظور تعیین ارزش آن‌ها با استفاده از تکنیک‌های داده‌کاوی پرداخته‌اند و درخت تصمیم یکی از پرکاربردترین الگوریتم‌های داده‌کاوی در این زمینه است. از آن‌جایی که این الگوریتم برای ساخت درخت، تنها یک ویژگی را در یک زمان برای آزمون در هر گره در نظر گرفته و وابستگی بین ویژگی‌ها را نادیده می‌گیرد، بنابراین این مسئله باعث افزایش ماکزیمم حافظه مورد نیاز می‌شود. به منظور برطرف نمودن این مشکل، در این پژوهش روشی برای بهبود درخت تصمیم با استفاده از شبکه عصبی برای کشف وابستگی بین ویژگی‌ها با رویکرد کاهش ماکزیمم حافظه مورد نیاز پیشنهاد شده که در کنار مدل آر.اف.ام برای پیش‌بینی ارزش مشتریان جدید استفاده می‌شود. نتایج آزمایش‌ها نشان می‌دهد که روش پیشنهادی با استفاده از وابستگی بین ویژگی‌ها می‌تواند ارزش مشتریان جدید را با ماکزیمم حافظه مورد نیاز کم‌تری نسبت به روش پایه پیش‌بینی کند.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Bank Customer Value based on RFM Model Using Improved Decision Tree to Reduce the Maximum Required Memory

نویسندگان [English]

  • Mohammad’reza Gholamian 1
  • Azimeh Mozafari 2
1  Assistant Professor, faculty member of Iran University of Science and Technology, Tehran, Iran.
2 MSc, Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

Management and evaluation of valuable customers, is one of the most important banking factors to reduce costs and increase profitability. In recent decades, many researchers have studied on the analysis of the customer attributes to evaluate value of them using data mining techniques and decision tree is one of the most widely used data mining algorithms in the field. Since this algorithm for built tree, considers only one attribute at a time to test each node and ignores the dependency between attributes, therefore, required maximum memory is increased. To solve this problem, in this research a method is proposed to improve the decision tree using neural network to explore the dependency between the attributes based on reduction in required maximum memory that is used based on RFM model to predict customer values. Results show that the proposed method using dependencies between attributes will predict the new customer values by less maximum memory compare to the basic method

کلیدواژه‌ها [English]

  • Customer Value
  • Clustering
  • Decision tree
  • Neural Network
  • RFM Model

اسدپور، نوید؛ و شاهرودی، کامبیز. (1392). جداسازی و رتبه‌بندی مشتریان خوش‌حساب بانک رفاه با رویکرد داده‌کاوی. دومین همایش ملی بررسی راهکارهای ارتقاء مباحث مدیریت، حسابداری و مهندسی صنایع در سازمان‌ها.

ایزدپرست، سید محمود؛ و فتح‌نژاد، فرامرز. (1391). ارائه چارچوب برای پیش‌بینی سطح خسارت مشتریان بیمه بدنه اتومبیل با استفاده از راهکار داده‌کاوی، تازه‌های جهان بیمه، 156، 32-15.

خالصی، نرگس؛ و شکوهی، امیرحسین. (1389). ارائه روشی جدید برای اعتبارسنجی مشتریان بانکی با استفاده از تکنیک‌های داده‌کاوی. چهارمین کنفرانس داده‌کاوی ایران. دانشگاه صنعتی شریف 1389. تهران.

رزمی، جعفر؛ و قنبری، آرش. (1388). ارائه مدلی نوین جهت محاسبه ارزش دوره عمر مشتری،نشریهمدیریتفناوریواطلاعات، 1(1)، 35-50.

زین‌العابدینی، سیده فاطمه. مهدوی، مهرگان؛ و خان بابایی، محمد. به‌کارگیری تکنیک‌های داده‌کاوی و بازاریابی در بخش‌بندی و تحلیل رفتار مشتریان بانکداری الکترونیکی. کنفرانس ملی فناوری اطلاعات و جهاد اقتصادی.

کفاش‌پور، آذر. توکلی، احمد؛ و علیزاده زوارم، علی. (1391). بخش‌بندی مشتریان بر اساس ارزش دوره عمر آن‌ها با استفاده از داده‌کاوی بر مبنای مدل آر.اف.ام. (RFM). پژوهش‌های مدیریت عمومی. (15)، 63-84.

Alvandi, M. Fazli, S. & Abdoli, F. S. (2012). K-Mean clustering method for analysis customer lifetime value with LRFM relationship model in banking services. International Research Journal of Applied and Basic Sciences, 3(11), 2294-2302.

Balaji, S. & Srivatsa, S. K. (2012). Decision Tree induction based classification for mining Life Insurance Data bases. International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN, 2249-9555.

Buttle, F. (2009). Customer Relationship Management. Concepts and Tools, Butterworthe.

Cheng, C. H. & Chen, Y. S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3), 4176-4184.

Demuth, H. & Beale, M. (1993). Neural network toolbox for use with MATLAB.

Farajian, M. A. & Mohammadi, S. (2010). Mining the banking customer behavior using clustering and association rules methods. International Journal of Industrial Engineering, 21(4).

Han, J. Kamber, M. & Pei, J. (2011). Data mining: concepts and techniques: concepts and techniques. Elsevier.

Hanafizadeh, P. & Paydar, N. R. (2013). A data mining model for risk assessment and customer segmentation in the insurance industry.International Journal of Strategic Decision Sciences, 4(1), 52-78.

Hosseini, S. M. S. Maleki, A. & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, 37(7), 5259-5264.

Hu, W. & Jing, Z. (2008). Study of segmentation for auto services companies based on RFM model, [online], <http:// www. pucsp.br/icim/ingles/downloads/pdf_procceeding_2008/66. pdf >.

Hughes, A. M. (2005). Strategic database marketing. McGraw-Hill Pub. Co.

Jayalakshmi, T. & Santhakumaran, A. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering, 3(1), 1793-8201.

Keiningham, T. L. Aksoy, L. & Bejou, D. (2006). Approaches to the measurement and management of customer value. Journal of Relationship Marketing, 5(2-3), 37-54.

Khajvand, M. & Tarokh, M. J. (2011). Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Procedia Computer Science, 3, 1327-1332.

Li, D. C. Dai, W. L. & Tseng, W. T. (2011). A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business. Expert Systems with Applications, 38(6), 7186-7191.

Li, W. Wu, X. Sun, Y. & Zhang, Q. (2010, December). Credit card customer segmentation and target marketing based on data mining. In Computational Intelligence and Security (CIS), 2010 International Conference on (pp. 73-76). IEEE.

Li, X. & Chan, C. W. (2010). Application of an enhanced decision tree learning approach for prediction of petroleum production. Engineering Applications of Artificial Intelligence, 23(1), 102-109.

Li, X. Chan, C. W. & Nguyen, H. H. (2013). Application of the Neural Decision Tree approach for prediction of petroleum production. Journal of Petroleum Science and Engineering, 104, 11-16.

Liang, Y. H. (2010). Integration of data mining technologies to analyze customer value for the automotive maintenance industry. Expert Systems with Applications, 37(12), 7489-7496.

Liu, D. R. & Shih, Y. Y. (2005). Hybrid approaches to product recommendation based on customer lifetime value and purchase preferences. Journal of Systems and Software, 77(2), 181-191.

Namvar, M. Gholamian, M. R. & KhakAbi, S. (2010, January). A two phase clustering method for intelligent customer segmentation. In Intelligent Systems, Modelling and Simulation (ISMS), 2010 International Conference on (pp. 215-219). IEEE.

Rezaeinia, S. M. Keramati, A. & Albadvi, A. (2012). An integrated AHP-RFM method to banking customer segmentation. International Journal of Electronic Customer Relationship Management, 6(2), 153-168.

Soeini, R. A. & Rodpysh, K. V. (2012). Evaluations of Data Mining Methods in Order to Provide the Optimum Method for Customer Churn Prediction: Case Study Insurance Industry. In 2012 International Conference on Information and Computer Applications (ICICA 2012) IPCSI (Vol. 24).

Sohrabi, B. & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20.

Wu, H. H. Chang, E. C. & Lo, C. F. (2009). Applying RFM model and K-means method in customer value analysis of an outfitter. In Global Perspective for Competitive Enterprise, Economy and Ecology (pp. 665-672). Springer London.

Wu, K. S. Wang, F. K. & Shyng, J. Y. (2013). Applied data mining techniques in insurance company: A comparative study of rough sets and decision tree.African Journal of Business Management, 7(24), 2309-2318.

Yen, S. J. & Lee, Y. S. (2011). A neural network approach to discover attribute dependency for improving the performance of classification. Expert Systems with Applications, 38(10), 12328-12338.