پیش‌بینی شاخص کل بورس اوراق بهادار تهران با رویکرد سیستم استنتاج عصبی- فازی انطباق پذیر و الگوریتم رقابت استعماری

10.22054/ims.2019.10374

چکیده

 
در این پژوهش یک روش نوین ترکیبی برای پیش­بینی شاخص کل بورس اوراق بهادار تهران ارائه شده است که هم­زمان از الگوریتم رقابت استعماری به‌عنوان روش انتخاب ویژگی و شبکه فازی عصبی انطباق انطباق‌پذیر به‌عنوان تابع پیش‌بینی کننده استفاده می­نماید. برای انجام این امر از 68 ویژگی مؤثر بر بازار بورس اوراق بهادار؛ که شامل شاخص­های اقتصادی، شاخص­های بورس ایران و سایر کشورها، شاخص‌های تحلیل فنی و شاخص­های شمعدان ژاپنی به‌صورت روزانه در بازه زمانی 1389-1395 به‌عنوان ورودی مدل استفاده شده است. همچنین، شاخص کل بورس اوراق بهادار روز آتی به‌عنوان متغیر هدف مسئله مسأله در نظر گرفته شده است. نتایج به‌دست‌آمده نشان می­دهد که مدل ترکیبی شبکه عصبی- فازی انطباق انطباق‌پذیر و الگوریتم رقابت استعماری پیش­بینی­های بسیار مناسب­تری داشته و به نسبت شبکه­های عصبی منفرد از سرعت بالاتر و توانایی تقریب قوی­تری برای پیش­بینی شاخص کل بورس اوراق بهادار برخوردار بوده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Tehran Stock Exchange Index Forecasting Using Approach Adaptive Neural-Fuzzy Inference System and Imperialist Competitive Algorithm

چکیده [English]

vStock market has been one of the most influential economic phenomena in the world for many years. The main players in the stock market are investors that are always looking to make the most profit. Since prices of stock market transactions is Impressionable from political, economic, social problems and the high volatility of prices, the prediction of stock market is very difficult.  The main solution for more profits in the market is making the right decisions about buying and selling appropriate stocks in appropriate time. Therefore, prediction is the most important requirements for traders. I this research, a new hybrid algorithm is proposed that uses imperialist competitive algorithm as a feature selection method and fuzzy adaptive neural inference system as a prediction function. This approach uses 63 features that affect the stock market, including economic features, Iran and other countries stock market indexes, technical analysis indexes and Japanese Candlestick on a daily basis in the period from 2010-2016. The Exchange Stock Index for the next day is considered as the target variable. The results show that the hybrid model includes Adaptive Neural Fuzzy Inference System (ANFIS) and Imperialist Competitive Algorithm, is much appropriate. This model is compared with a single ANFIS model has better approximation speed and the ability to predict the sto

کلیدواژه‌ها [English]

  • Stock Market Forecasting
  • imperialist competitive algorithm
  • Adaptive Neural Fuzzy Inference System
  • Time series
  • Feature Selection
 

حیدری زارع، ب. کردلوئی، ج. (1389). پیش­بینی بازده سهام با استفاده از مدل­های غیرخطی آستانه­ای و بررسی نقش حجم معاملات در بهبود عملکرد این مدل­ها. نشریه علمی‌پژوهشی تحقیقات مالی، شماره 34، صص. 91-108.

سینائی، حسنعلی؛ مرتضوی، سعید ا...؛ تیموری اصل، یاسر. (1384). پیش­بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه عصبی مصنوعی. مجله بررسی­های حسابداری و حسابرسی، شماره 41، پاییز، صص. 83-59.

صالحی، مجتبی، کردکتولی، علیرضا، (1396). انتخاب ویژگی‌های بهینه به‌منظور تعیین ریسک اعتباری مشتریان بانکی. مطالعات مدیریت کسب‌وکار هوشمند، دوره 6، شماره 22، زمستان 1396، صفحه 129-154

منجمی، ا.، ابزاری، م.، و رعیتی شوازی، ع.، (1388). پیش­بینی قیمت سهام در بازار بورس اوراق بهادار با استفاده از شبکه عصبی فازی و الگوریتم­های ژنتیک و مقایسه آن با شبکه عصبی مصنوعی. فصلنامه اقتصادی مقداری، دوره 6، شماره 3، پاییز 1388، صص.1-26.

هرمزی شیرکو، (1388). بررسی رابطه بین بازده غیرعادی سهام و متغیرهای کلان اقتصادی در بورس اوراق بهادار تهران. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد واحد تبریز، دانشکده اقتصاد و مدیریت.

هیبتی، فرشاد؛ موسوی، سیدمصطفی. (1389). پیش‌بینی شاخص بورس سهام با استفاده از مدل‌سازی شبکه عصبی فازی. پژوهشنامه اقتصادی، شماره 7 (ویژه­نامه بازار سرمایه)، صص. 72-61.

Asadi, S., Hadavandi, E., Mehmanpazir, F. and Nakhostin, M. M. (2012) Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction, Knowledge-Based Systems. Elsevier B.V., 35(5), pp. 245–258.

Ben Naser, Samy and Ghazuani, Samir. (2007). Stock markets, Banks and economic growth Empirical Evidence from the MENA region. Research in International Business anFinance, 21(2), pp. 297-315.

Göçken Mustafa, Özçalıcı Mehmet, Boru Aslı, Ayse Tugba Dosdogru. (2016). Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert SystemsWith Applications, 44(1), pp. 320–331.

Jang J.S. (1993). ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactionson Systems Man, and Cybernetics, 23(3), pp. 665–685.

Huang, Y., Capretz, L. F., & Ho, D. (2019). Neural Network Models for Stock Selection Based on Fundamental Analysis. arXiv preprint arXiv:1906.05327

Lincy Rubell Marion G, Jessy John C. (2016). A multiple fuzzy inference systems frame work for daily stock trading with application to NADAQ stock exchange. Expert Systems withApplications, 44(1), pp. 13-22.

M. Sudhakar, J. Albert Mayan and N. Srinivasan. (2016). Intelligent Data Prediction System Using Data Mining and Neural Networks. Proceedings of the International Conference on Soft Computing Systems, Advances in Intelligent Systems and Computing 398. India 2016.

Pimenta, A., Guimaraes, F. G., Carrano, E. G., Nametala, C. A. L. and Takahashi, R. H. C. (2014) GoldMiner: A genetic programming based algorithm applied to Brazilian Stock Market, in 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 397–402.

Prema, K. V., Manish Agarwal, N., Krishna, M. and Agarwal, V. (2016) Stock Market Prediction using Neuro-Genetic Model, Indian Journal of Science and Technology, 8(35), pp. 876–891.

Qiu, M., Song, Y. and Akagi, F. (2016) Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market, Chaos, Solitons & Fractals. Elsevier Ltd, 85(3), pp. 1–7.

Vieira, S. M., Sousa, J. M. C., & Kaymak, U. (2012). Fuzzy Criteria for Feature Selection. Fuzzy Sets and Systems, 189(1), pp. 1–18.

Yung-Keun Kwon and Byung-Ro Moon. (2007). A Hybrid Neurogenetic Approach for Stock Forecasting, IEEE Transactions on Neural Networks, 18(3), pp. 851–864.