طبقه‌بندی مشتریان بر اساس عوامل مؤثر بر تمایل به خرید آن‌ها

10.22054/ims.2017.8623

چکیده

 در این پژوهش سعی شده است میان دو دسته داده‌های جمعیت شناختی  و داده‌های حاصل از تراکنش مشتریان در مدل RFM پیشنهادی ارتباط برقرار شود که شاخص رویگردانی نیز در آن لحاظ شده است. بدین منظور، در ابتدا داده‌های تراکنش در بازه چهارساله مشتریان یک شرکت خدمات اینترنتی فراهم شده و سپس با استفاده از روش k-means به خوشه­بندی آن‌ها پرداخته شده است. نتایج تحقیق بیانگر این است که سه فاکتور کیفیت خدمت، تصدیق انتظارات و رضایت پس از خرید به‌عنوان فاکتورهای معنادار در رفتار خرید مشتریان محسوب می‌گردند. در ادامه جهت کاوش ارتباط میان فاکتورهای ذهنی مشتریان و طبقه‌بندی آن‌ها با استفاده از قواعد انجمنی مبتنی بر الگوریتم GRI به ارائه راهبرد و برنامه عملیاتی برای هر طبقه از مشتریان پرداخته شده است. سپس با استفاده از تحلیل واریانس یک‌طرفه وجود تفاوت میان طبقه‌های مختلف مشتریان بررسی شده است. نتایج حاصله بیانگر آن می‌باشند که فاکتور تصدیق انتظارات و رضایت پس از خرید در ایجاد وفاداری مشتریان نقش عامل بهداشتی و فاکتور کیفیت خدمت در ایجاد وفاداری مشتریان نقش عامل انگیزشی را ایفا می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Customers' Segmentation based on Influential Factors on their Purchase Intention

چکیده [English]

This research aims at associating two groups of demographic and transaction related factors and furthermore, proposes customer churn factor as another influential factor in customer value analysis. To this end, at first, customers' transaction data in a real local ISP in a four year period are utilized for segmentation purpose using k-means method. Regarding service nature of the case, customers' behavior has been considered in terms of customer satisfaction factors. The results of Exploratory Factor Analysis (EFA) indicate that three factors of service quality, expectation confirmation and post-purchasing satisfaction are influential factors. Then, association rules using GRI algorithm are exploited in order to investigate among customers' behaviors and propose appropriate strategies and action plans for each customer segment. Finally, segmentation results are associated with physiographic variables and existence of a significant difference among identified segments is more investigated using one way ANOVA test. The results clarified that expectation confirmation and post- purchasing satisfaction as hygienic factors and service quality as an incentive factor influence customer loyalty.
                                            

کلیدواژه‌ها [English]

  • Customer Churn
  • Segmentation
  • Physiographic Variables

 

غلامیان، محمدرضا؛ مظفری، عظیمه. (1395). پیش‌بینی ارزش مشتریان جدید بانک بر مبنای مدل آر.اف.ام با استفاده از درخت تصمیم بهبودیافته در راستای کاهش حداکثر حافظه مورد نیاز.فصلنامه مطالعات مدیریت فناوری اطلاعات. 5 (17). 121-93.

Alden, D. L., He, Y., & Chen, Q. (2010). Service recommendations and customer evaluations in the international marketplace: cultural and situational contingencies. Journal of Business Research, 63(1), 38-44.

Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 25(3), 351-370.

Cermak, D. S., File, K. M., & Prince, R. A. (2011). Customer participation in service specification and delivery. Journal of Applied Business Research (JABR), 10(2), 90-97.

Chen, J. V., & Aritejo, B. A. (2008). Service quality and customer satisfaction measurement of mobile value-added services: a conceptual review. International Journal of Mobile Communications, 6(2), 165-176.

Chen, Y., Zhang, G., Hu, D., & Fu, C. (2007). Customer segmentation based on survival character. Journal of intelligent manufacturing, 18(4), 513-517.

Cho, Y., & Kim, C. (2006). An effective classifying methodology for on-line retail customers: Application to decision trees. DAEHAN Association of Business Administration, 19(6), 2117-2134.

Fevzi Okumus, D. R. C., Dr Joe Hutchinson, Dr, Bogicevic, V., Yang, W., Bilgihan, A., & Bujisic, M. (2013). Airport service quality drivers of passenger satisfaction. Tourism Review, 68(4), 3-18.

Hamka, F., Bouwman, H., De Reuver, M., & Kroesen, M. (2014). Mobile customer segmentation based on smartphone measurement. Telematics and Informatics, 31(2), 220-227.

Handen, L. (2000). Putting CRM to work: The rise of the relationship. Customer relationship management: A Strategic imperative in the world of e-Business, 7-18.

Hiziroglu, A. (2013). Soft computing applications in customer segmentation: State-of-art review and critique. Expert Systems With Applications, 40(16), 6491-6507.

Hjort, K., Lantz, B., Ericsson, D., & Gattorna, J. (2013). Customer segmentation based on buying and returning behaviour. International Journal of Physical Distribution & Logistics Management, 43(10), 852-865.

Hong, T., & Kim, E. (2012). Segmenting customers in online stores based on factors that affect the customer’s intention to purchase. Expert systems with applications, 39(2), 2127-2131.

Hughes, A. M. (1994). Strategic database marketing. Chicago: Probus Publishing Company.

Hung, C., & Tsai, C.-F. (2008). Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand. Expert systems with applications, 34(1), 780-787.

Huerta-Muñoz, D. L., Ríos-Mercado, R. Z., & Ruiz, R. (2017). An iterated greedy heuristic for a market segmentation problem with multiple attributes. European Journal of Operational Research, 261(1), 75-87.

Jang, S. C., Morrison, A. M., & O’Leary, J. T. (2002). Benefit segmentation of Japanese pleasure travelers to the USA and Canada: selecting target markets based on the profitability and risk of individual market segments. Tourism management, 23(4), 367-378.

Jayawardhena, C. (2010). The impact of service encounter quality in service evaluation: evidence from a business-to-business context. Journal of Business & Industrial Marketing, 25(5), 338-348.

Jemmasi, M., Strong, K. C., & Taylor, S. A. (2011). Measuring service quality for strategic planning and analysis in service firms. Journal of Applied Business Research (JABR), 10(4), 24-34.

Kiang, M. Y., Hu, M. Y., & Fisher, D. M. (2006). An extended self-organizing map network for market segmentation—a telecommunication example. Decision Support Systems, 42(1), 36-47.

Ladhari, R. (2010). Developing e-service quality scales: A literature review. Journal of Retailing and Consumer Services, 17(6), 464-477.

Larivière, B., Aksoy, L., Cooil, B., & Keiningham, T. L. (2011). Does satisfaction matter more if a multichannel customer is also a multicompany customer? Journal of Service Management, 22(1), 39-66.

Lin, C.-P., Tsai, Y. H., & Chiu, C.-K. (2009). Modeling customer loyalty from an integrative perspective of self-determination theory and expectation–confirmation theory. Journal of Business and Psychology, 24(3), 315-326.

Maddox, R. N. (1981). Two-factor theory and consumer satisfaction: Replication and extension. Journal of consumer research, 8(1), 97-102.

Mansouri, T., Zare Ravasan, A., & Gholamian, M. R. (2014). A Novel Hybrid Algorithm based on K-means and Evolutionary Computations for Real Time Clustering. International Journal of Data Warehousing and Mining (IJDWM). 10 (3). 1-14.

McCarty, J. A., & Hastak, M. (2007). Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression. Journal of business research, 60(6), 656-662.

Mittal, V., & Kamakura, W. A. (2001). Satisfaction, repurchase intent, and repurchase behavior: investigating the moderating effect of customer characteristics. Journal of marketing research, 131-142.

Murray, P. W., Agard, B., & Barajas, M. A. (2017). Market segmentation through data mining: A method to extract behaviors from a noisy data set. Computers & Industrial Engineering, 109, 233-252.

Payne, A., & Frow, P. (2005). A strategic framework for customer relationship management. Journal of marketing, 167-176.

Schijns, J. M. C., & Schröder, G. J. (1996). Segment selection by relationship strength. Journal of Direct Marketing, 10(3), 69-79.

Schlesinger, L. A., & Heskett, J. L. (2012). Breaking the cycle of failure in services. Sloan Management Review.

Schneider, B., & Bowen, D. E. (2010). Winning the service game: Springer.

Shaharudin, M. R., Yusof, K. M. M., Elias, S. J., & Mansor, S. W. (2010). Factors Affecting Customer Satisfaction in After-Sales Service of Malaysian Electronic Business Market. Canadian Social Science, 5(6), 10-18.

Shin, H., & Sohn, S. Y. (2004). Segmentation of stock trading customers according to potential value. Expert systems with applications, 27(1), 27-33.

Swinyard, W. R., & Smith, S. M. (2003). Why people (don't) shop online: a lifestyle study of the internet consumer. Psychology & Marketing, 20(7), 567-597.

Taghva, M., Bamakan, S., & Toufani, S. (2011). A data mining method for service marketing: A case study of banking industry. Management Science Letters, 1(3), 253-262.

Taylor, S. A., & Baker, T. L. (1994). An assessment of the relationship between service quality and customer satisfaction in the formation of consumers' purchase intentions. Journal of retailing, 70(2), 163-178.

Vargo, S. L., Nagao, K., He, Y., & Morgan, F. W. (2007). Satisfiers, dissatisfiers, criticals, and neutrals: A review of their relative effects on customer (dis) satisfaction. Academy of Marketing Science Review, 2007, 1.

Wilson, B. (2008). Soft systems methodology: Conceptual model building and its contribution: Wiley.

Zare Ravasan, A., & Mansouri, T. (2015). A Fuzzy ANP based weighted RFM model for customer segmentation in auto insurance sector. International Journal of Information Systems in the Service Sector. 7 (2). 71-86.

Zeithaml, V. A., Parasuraman, A., & Malhotra, A. (2002). Service quality delivery through web sites: a critical review of extant knowledge. Journal of the academy of marketing science, 30(4), 362-375.