مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی رشته دکتری مدیریت فناوری اطلاعات، گروه تخصصی مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 عضو هیات علمی، گروه تخصصی برق و کامپیوتر، دانشکده مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران (مسئول مکاتبات)kویسنده مسئول: دکتر مجید سروری majidsorouri@srbiau. ac. ir Email Address:

3 عضو هیات علمی، گروه تخصصی مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 عضو هیات علمی، گروه تخصصی مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

نوآوری فناورانه حوزه صنعت مالی، زیست بوم فناوری مالی را موجب شد. با ظهور هوش مصنوعی، دنیای فناوری و مالی به هم گره‌خورد تا پردازش‌های مالی هوشمندانه تری به مدیران جهت تصمیم‌گیری‌های هوشمندانه ارائه می‌کند. نتایج استفاده از روش‌های یادگیری ماشین ثابت نبوده و پیش‌بینی دقیق در مورد نتایج حاصل از تجربه مشتریان برای الگوریتم‌های یادگیری ماشین چالش‌برانگیزاست. تلاش‌های زیادی در خصوص مدیریت تجربه مشتری انجام‌شده است ولی، چارچوب تلفیقی فناوری مالی در تعامل باهوش مصنوعی و یادگیری ماشین در مفهوم‌سازی تجربه مشتری که می تواند دانش تجربه مشتری را موجب شود، موضوعی است که کمتر به آن پرداخته‌شده است. این مقاله، با بررسی 75 مقاله و جمعبندی آن در 41 مقاله پژوهشی، موضوع پژوهش حاضر را موردبررسی قرار داده است. جهت پیش بینی ارائه نظریه ،روش تحقیق، تئوری بنیادین می باشد. هدف این مقاله،پوشش شکاف مطالعاتی ازطریق ارائه یک چارچوب تلفیقی است که مسیر کلی برای انجام و مطالعه پژوهش‌های حوزه فناوری مالی و هوش مصنوعی، در استخراج و مدیریت دانش تجربه مشتریان را در برمی‌گیرد. یافته‌ها نشان می‌دهند که مطالعات انجام شده در سه محور فوق را می‌توان به پنج بخش اصلی نوآوری طبقه‌بندی کرد که شبکه‌های ایجاد ارزش از تجربه مشتریان را در چارچوب تلفیقی فناوری مالی، یادگیری ماشین و تجربه مشتری ارائه می کند. یافته‌ها، مسیر خوبی برای پرداختن به برخی محدودیت‌ها در پژوهش‌های فناوری‌های مالی و هوش مصنوعی برای مدیریت دانش تجربه مشتریان از طریق امکان ارائه الگو عملکرد مشتریان را فراهم می‌کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Systematic Review Focusing on Financial Technology Machine Learning and Customer Experience and Providing Framework for Future Research

نویسندگان [English]

  • Ahmad Rahmani 1
  • Majid Sorouri 2
  • Reza Radfar 3
  • Mahmood Alborzi 4

1 PhD Student in Information Technology Management, Department of Information Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran ahmad. rahmani@srbiau. ac. ir

2 Assistant Professor, Department of Electrical and Computer Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranCorresponding Author: majidsorouri@srbiau. ac. ir

3 Professor, Department of Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 Associate Professor, Department of Information Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Technological innovation in the financial industry created the financial technology ecosystem. With the advent of artificial intelligence, the technology and financial worlds are intertwined to allow smarter financial processes to enable managers to make smarter decisions. It is not a fixed method of using the machine and accurate prediction of the test results using the machine algorithms is challenging. Much research has been done on the specific management of the customer experience, but research on financial technology in the artificial intelligence and machine industry in the sense of constructing a theory that can create a customer experience is a subject that pays less attention to. . This article, by reviewing 75 articles and summarizing it in 41 research articles, has examined the subject of the present study. In order to predict the presentation of theory, research method is a fundamental theory. The purpose of this article is to cover the gap of studies through which a research path is studied and the field of financial technology and artificial intelligence is examined. Findings show that what is done in extraordinary networks can be divided into five main parts of innovation. The findings provide a good way to address some of the issues in financial and artificial technology research for knowledge management experience through the possibility of providing a customer performance model.

کلیدواژه‌ها [English]

  • Fintech
  • Systematic Review
  • Machine learning
  • Customer experience
Addis, M., Holbrook, M, B. (2001). On the conceptual link between mass customization and experiential Consumption: an explosion of subjectivity. Journal of Consumer Behaver, 1(1), 50–66.  https://doi. org/10. 1002/cb. 53
Alavi, M., Carlson, P. (1992). A Review of MIS Research and Disciplinary Development. Journal of Management Information Systems, 4(8), 45–62. https://doi. org/10. 1080/07421222. 1992. 11517938
Alghanem, H., Shanna, M., Salloum, S., Shaalan, K. (2020). The Role of KM in Enhancing AI Algorithms and Systems. Advances in Science, Technology and Engineering Systems Journal, 4(5), 388-396. https://dx.doi.org/10.25046/aj0504245
Andreini, D., Pedeliento, G., Zarantonello, L., Solerio, C. (2019). Reprint of "A renaissance of brand experience: Advancing the concept through a multi-perspective analysis". Journal of Business Research, 4(96), 355-365. https://doi. org/10. 1016/j. jbusres. 2018. 05. 047
Ansari, E., Sadreddini, M, H., Mirsadeghi, S, M, H. (2018). TFI-Apriori: Using new encoding to optimize the Apriori algorithm. Intelligent data analysis journal, 4(22), 807-827.https://doi. org/10. 3233/IDA-173473
Anshari, M., Almmunawar, M, N. (2018). Digital marketplace and Fintech to Support Agriculture Sustainability. International Conference on Power and Energy Systems Engineering, 2(156), 234-238.https://doi. org/10. 1016/j. egypro. 2018. 11. 134
Arha, B., Jufri, A (2020). Fintech: A Literature Review. Journal of Proaksi, 2(7), 59-65.https://doi. org/10. 32534/jpk. v7i2. 1220
Brakus, J, J., Schmitt, B, H., Zarantonello, L. (2009). Brand experience: what is it? How is it measured? Does it Affect loyalty? Journal of Marketing, 6 (73), 52–68.https://doi. org/10. 1509/jmkg. 73. 3. 52
Buchak, G., Matvos, G., Piskorski, T., Seru, A. (2018). Fintech, Regulatory Arbitrage and the Rise of Shadow Banks. Journal of Financial Economics, 3(130), 453-483. https://doi.org/10.1016/j.jfineco.2018.03.011
Chakraborty, C., Joseph A. (2017). Machine learning at central banks. Bank of England Working Paper, 10(1),1-89.http://dx. doi. org/1 10.2139/ssrn.3031796
Cutcliffe, J, R (2001). Methodological issues in grounded theory. Journal of Advanced Nursing. 6(31), 1476-1784.https://doi. org/10. 1046/j. 1365-2648. 2000. 01430. x
Dranev, Y., Frolova, K., Ochirova, E. (2019). The Impact of Fintech M&A on Stock Returns. Research in International Business and Finance, 5(48), 353-364.https://doi.org/10.1016/j.ribaf.2019.01.012
Czajkowski, M., Kretowski, M. (2019). Decision tree underfitting in mining of gene expression data. An evolutionary multi-test tree approach. Expert Systems with Applications, 8(137), 392-404.https://doi.org/10.1016/j.eswa.2019.07.019
Drasch, B, J., Schweizer, A., Urbach, N. (2018). Integrating the ‘Troublemakers’: A taxonomy for cooperation, between banks and Fintech. Journal of Economics and Business, 12(100), 26-42. https://doi.org/10.1016/j.jeconbus.2018.04.002
Duda, R. O., Hart, P. E., Stork, D. G. (2001). Pattern Classification. New York: Wiley, 2(24), 305-307.https://doi.org/10.1007/s00357-007-0015-9 
Gai, K., Qiu, M., Sun, X. (2018). A Survey on Fintech. Journal of Network and Computer Applications, 3(103), 262=273.https://doi.org/10.1016/j.jnca.2017.10.011
Gomber, P., Koch, J, A., Siering, M. (2017). Digital Finance and Fintech: Current Research and Future Research Directions. Journal of Business Economics, Forthcoming, 5(87), 537-580.https://doi. org/10. 1016/j. ribaf. 2019. 01. 012
Huei, C, T., Cheng, L, S., Seong, L, C., Khin, A, A., Bin, R, L, L. (2018). Preliminary Study on Consumer Attitude towards Fintech Products and Services in Malaysia. International journal of Engineering and Technology, 2/29(7), 166-167.http://dx. doi. org/10. 14419/ijet. v7i2. 29. 13310
Inkster, B., Loo, P., Mateen, B., Stevenson, A. (2019). Improving insights into health care with data linkage to financial technology. The Lancet Digital Health, 3(1), 110-112.https://doi. org/10. 1016/S2589-7500 (19)30061-5
Jagtiani, J., Lemieux, C. (2018). Do Fintech Lenders Penetrate Areas That Are Underserved by Traditional Banks? Journal of Economics and Business,12(100), 43-54.https://doi. org/10. 1016/j. jeconbus. 2018. 03. 001
Jagtiani, J., Lemieux, C. (2019). The Roles of Alternative Data and Machine Learning in Fintech Lending: Evidence from the Lending Club Consumer Platform. Journal of Financial Management, 4(48),1009-1029. https://doi.org/10.1111/fima.12295 
Knyazeva, A. (2019). Financial Innovation in Microcap Public Offerings. Journal of Banking and Finance, 4(100), 283-305.https://doi. org/10. 1016/j. jbankfin. 2018. 06. 012

Lee, I., Shin, Y, J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Juornal of Business Horizons, 1(61), 35-46.https://doi.org/10.1016/j.bushor.2017.09.003 

Lemon, K, N., Verhoef, P, C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 6(80), 69-96.https://doi. org/10. 1509/jm. 15. 0420
Leong, C., Tan, B., Xiao, X., Tan, F, T, C., Sun, Y. (2017). Nurturing a Fintech ecosystem: The case of a youth microloan startup in China. International Journal of Information Management, 2(37), 92-97.https://doi. org/10. 1016/j. ijinfomgt. 2016. 11. 006
Murray, J, B., Evers, D, J., Janda, S. (1995). Marketing, Theory Borrowing, and Critical Reflection.Journal of Macromarketing, 2(15), 92-106.https://doi.org/10.1177/027614679501500207
Petersen, K., Vakkalanka, S., Kuzinarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering. Juornal of Information and Software Technology, 9(64), 1-18. https://doi.org/10.1016/j.infsof.2015.03.007 
Senyo, P, K., Addae, E., Boateng, R. (2018). Cloud computing research: A review of research themes, frameworks, methods and future research directions. International Journal of Information Management, 1(38), 128-139. https://doi. org/10. 1016/j. ijinfomgt. 2017. 07. 007
Senyo, P, K., Liua, K., Effah, J. (2019). Digital business ecosystem: Literature review and a framework for future research. International Journal of Information Management, 9(47), 52-64. https://doi. org/10. 1016/j. ijinfomgt. 2019. 01. 002
Serrano, W. (2018). Fintech Model: The Random Neural Network with Genetic. Procedia Computer Science journal, (126), 537-546.https://doi. org/10. 1016/j. procs. 2018. 07. 288
Silva, M (2015). A Systematic Review of Foresight in Project Management Literature. Procedia Computer Science, (64), 792-799.https://doi. org/10. 1016/j. procs. 2015. 08. 630
Suryono, R, R. Budi, Indra. Purwandari, B. (2020). Challenges and Trends of Financial Technology (Fintech): A Systematic Literature Review. Information (Switzerland) Journal, 12(11), 590-610.http://dx. doi. org/10. 3390/info11120590
Teran, B, A., Velasco, A, M., Argon, G. (2021). Knowledge Management for Open Innovation: Bayesian Networks through Machine Learning. Management of Technology and Innovation, 1(7), 40-58.https://doi.org/10.3390/joitmc7010040 
Thakor, A. (2019). Fintech and banking: What do we know? Journal of Financial Intermediation, 2(41), 100833-100879.https://doi.org/10.1016/j.jfi.2019.100833
Ulusoy, S., Batıoglu, A., Ovatman, T. (2019). Omni-script: Device independent user interface development for Omni-Channel Fintech applications. Journal of Computer Standards & Interfaces, 6(64), 106-116.https://doi. org/10. 1016/j. csi. 2019. 01. 003
Waqas, M., Hamzah, Z, L., Salleh, M, A. (2021). Customer experience: a systematic literature review and consumer culture theorybased conceptualization. journal of Management Review Quarterly, 1(71), 135-176.https://doi. org/10. 1007/s11301-020-00182-w
Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C. (2012). Systematic literature review of machine learning based software development effort estimation models. Information and Software Technology, 1(54), 41-59.https://doi. org/10. 1016/j. infsof. 2011. 09. 002
Whetten, D, A., Felin,T., King,B, G. (2009). The Practice of Theory Borrowing in Organizational Studies: Current Issues and Future Directions. Journal of Management, 3(35), 537-563. https://doi. org/10. 1177/0149206308330556
Wolfswinkel, J, F., Furtmueller, E., Wilderom. C, P. (2013). Using Grounded Theory as a Method for Rigorously Reviewing Literature. European Journal of Information Systems, 1(22), 45-55.https://doi: 10. 1057/ejis. 2011. 51
Wonglimpiyarat, J. (2018). Challenges and dynamics of Fintech crowd funding: An innovation, system approach. Journal of High Technology Management Research, 1(29), 98-108.https://doi. org/10. 1016/j. hitech. 2018. 04. 009
Zhang, Y, Z., Rohlfer, S., Rajasekera, J. (2020). An Eco-Systematic View of Cross-Sector Fintech: The Case of Alibaba and Tencent. Sustainability Journal, 21(12), 8907-8932.https://doi.org/10.3390/su12218907
Zhou, Z., Liu, Y., Yu, H., Ren, R. (2020). The influence of machine learning-based knowledge management model on enterprise organizational Capability innovation and industrial development. PLOS ONE Journal, 12(15), e0242253(1-15).https://doi. org/10. 1371/journal. pone. 0242253.
 
 
استناد به این مقاله: رحمانی، احمد.، سروری، مجید.، رادفر، رضا.، البرزی، محمود. (1401). مرور نظام‌مند ادبیات پژوهش با محوریت فناوری مالی، یادگیری ماشین و مدیریت تجربه مشتری و ارایه چارچوبی برای پژوهش‌های آتی، مطالعات مدیریت کسب وکار هوشمند، 10(39)، 329-356.
DOI: 10.22054/IMS.2022.61447.2006
 Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..