خانلری، الف.، رییسی وانانی، الف.، و مقدسی، ز. (1395). پیش بینی رویگردانی مشتریان شرکتهای ارایهدهنده خدمات اینترنت با ترکیبی از الگوریتمهای داده کاوی؛ مطالعه موردی یک شرکت ایرانی.
دومین کنفرانس بینالمللی در مدیریت، حسابداری و اقتصاد، تهران.
https://civilica.com/doc/610791/
سپهری، س.، و کوشا، ح. (1396). پیشبینی رویگردانی مشتریان با استفاده از کرنلهای ترکیب شده در تکنیک ماشین بردار پشتیبان.
سومین کنفرانس بینالمللی مهندسی صنایع و سیستمها (ICISE 2017)، مشهد.
https://civilica.com/doc/669097
عاشوری، ع.، و البدوی، الف. (1394). مدل ترکیبی برای پیشبینی دلایل رویگردانی مشتریان شرکتهای ارایهدهنده خدمات اینترنتی ISP.
دوازدهمین کنفرانس بینالمللی مهندسی صنایع، تهران.
https://civilica.com/doc/515893
عسگری، م. تقوا، م. و تقوی فرد، م. (1398). پیشبینی رویگردانی جزئی مشتریان بانکها با استفاده از مدل زنجیره وضعیت.
فصلنامه مطالعات مدیریت کسب و کار هوشمند، 7(28)، 67–110. https://doi.org/10.22054/IMS.2019.10230
کاظمی، م.، و حجازی نیا، ر. (1392). ارایه مدلی به منظور پیشبینی رویگردانی مشتریان شرکتهای مخابراتی.
دومین همایش ملی علوم مدیریت نوین، گرگان.
https://civilica.com/doc/231685
Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A., & Huang K. (2017). Customer churn prediction in the telecommunication sector using a rough set approach.
Neurocomputing, 237: 242-254.
https://doi.org/10.1016/j.neucom.2016.12.009
Bi, W., Cai, M., Liu, M., & Li G. (2016). A Big Data Clustering Algorithm for Mitigating the Risk of Customer Churn.
IEEE Transactions on Industrial Informatic, 12(3): 1270-1281.
https://doi.org/10.1109/tii.2016.2547584
Caigny, A.D., Coussement, K., & De Bock, K.W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees.
European Journal of Operational Research, 269(2): 760-772.
https://doi.org/10.1016/j.ejor.2018.02.009
Caigny, A.D., Coussement, K., & De Bock, K.W. (2020). Leveraging fine-grained transaction data for customer life event predictions.
Decision Support Systems, 130: 113232.
https://doi.org/10.1016/j.dss.2019.113232
Chawla, N.V., Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P. (2002). SMOTE: synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research, 16: 321-357.
https://doi.org/10.1613/jair.953
Coussement, K., Lessmann, S., & Verstraetenc, G. (2017). A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry.
Decision Support Systems, 95: 27-36.
https://doi.org/10.1016/j.dss.2016.11.007
Dahiya, K., & Bhatia, S. (2015). Customer churn analysis in telecom industry.
2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions): 1-6.
https://doi.org/10.1109/icrito.2015.7359318
Gui, C. (2017). Analysis of imbalanced data set problem: The case of churn prediction for telecommunication.
Artificial Intelligence Research, 6(2): 93-99.
https://doi.org/10.5430/air.v6n2p93
Hadden, J., Tiwari, A., Roy, R., & Ruta, D. (2007). Computer assisted customer churn management: State-of-the-art and future trends.
Computers & Operations Research, 34(10): 2902-2917.
https://doi.org/10.1016/j.cor.2005.11.007
Hassouna, M., Tarhini, A., Elyas, T., & AbouTrab, M.S. (2016). Customer churn in mobile markets a comparison of techniques.
International Business Research, 8(6): 224-237.
https://doi.org/10.48550/arXiv.1607.07792
Idris, A., Rizwan, M., & Khan, A. (2012). Churn prediction in telecom using Random Forest and PSO based data balancing in combination with various feature selection strategies.
Computers & Electrical Engineering, 38(6): 1808-1819.
https://doi.org/10.1016/j.compeleceng.2012.09.001
Jain, H., Khunteta, A., & Srivastava, S. (2021). Telecom churn prediction and used techniques, datasets and performance measures: a review.
Telecommun Systems, 76: 613-630.
https://doi.org/10.1007/s11235-020-00727-0
Keramati, A., Jafari-Marandi, R., Aliannejadi, M., Ahmadian, I., Mozaffari, M., & Abbasi, U. (2014). Improved churn prediction in telecommunication industry using data mining techniques.
Applied Soft Computing, 24: 994-1012.
https://doi.org/10.1016/j.asoc.2014.08.041
Khodabandehlou, S., & Rahman, M.Z. (2017). Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior.
Journal of Systems and Information Technology, 19(1/2): 65-93.
https://doi.org/10.1108/JSIT-10-2016-0061
Li, S.T., Shue, L.Y., & Lee, S.F. (2006). Enabling customer relationship management in ISP services through mining usage patterns.
Expert Systems with Applications, 30(4): 621-632.
https://doi.org/10.1016/j.eswa.2005.07.016
Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge discovery process models and methodologies.
The Knowledge Engineering Review, 25(2): 137-166.
https://doi.org/10.1017/S0269888910000032
Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8): 1226-1238.
https://doi.org/10.1109/TPAMI.2005.159
Speiser, J.L., Miller, M.E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling.
Expert Systems with Applications, 134: 93-101.
https://doi.org/10.1016/j.eswa.2019.05.028
Torres, R., Sidorova, A., & Jones, M.C. (2018). Enabling firm performance through business intelligence and analytics: A dynamic capabilities perspective.
Information & Management, 55(7): 822-839.
https://doi.org/10.1016/j.im.2018.03.010
Ullah, I., Raza, B., Malik, A.K., Imran, M., Islam, S.U., & Kim, S.W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector.
IEEE Access, 7: 60134-60149.
https://doi.org/10.1109/ACCESS.2019.2914999
Vafeiadis, T., Diamantaras, K.I., Sarigiannidis, G., & Chatzisavvas, K.Ch. (2015). A comparison of machine learning techniques for customer churn prediction.
Simulation Modelling Practice and Theory, 55: 1-9.
https://doi.org/10.1016/j.simpat.2015.03.003
Xiao, J., Jiang, X., He, C., & Teng, G. (2016). Churn prediction in customer relationship management via GMDH-based multiple classifiers ensemble.
IEEE Intelligent Systems, 31(2): 37-44.
https://doi.org/10.1109/MIS.2016.16
Yap, B.W., Abd Rani, K., Abd Rahman, H.A., Fong, S., Khairudin, Z., & Abdullah, N.N. (2014). An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets.
Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013): 13-22.
https://doi.org/10.1007/978-981-4585-18-7_2
Zhu, B., Baesens, B., & vanden Broucke, S.K.L.M. (2017). An empirical comparison of techniques for the class imbalance problem in churn prediction.
Information Sciences, 408: 84-99.
https://doi.org/10.1016/j.ins.2017.04.015
Asgari, M., Taghva, M., & Taghavifard, M.T. (2019). Prediction of Bank Customers’ Partial Churn Using State Chain Model.
BI Management Studies, 7(28): 67 – 110. [In Persian]
https://doi.org/10.22054/IMS.2019.10230
Ashoori, A., & Albadavi, A. (2016). Combined model for predicting customer churn reasons of Internet service providers (ISP).
12th International Conference in Industrial Engineering, Tehran. [In Persian]
https://civilica.com/doc/515893
Kazami, M., & Hejazinia, R. (2013). Provide a Model for Customer Churn Prediction of telecommunication companies. The Second Conference on Modern Management Sciences, Gorgan. [In Persian]
https://civilica.com/doc/231685
Kazami, M., & Hejazinia, R. (2017). Study affective variables in mobile customers churn. Journal of Development Evolution Management, 1395(special issue): 115-121. [In Persian]
Khanlari, A., Vanani, I.R., & Moghadasi, Z. (2017), Customer Churn Prediction of Internet service providers with a combination of data mining algorithms; Case study of an Iranian company.
2nd International Conference of Management, Accounting and Economics, Tehran. [In Persian]
https://civilica.com/doc/610791/
Sepehri, S., & Koosha, H. (2017). Customer Churn Prediction using kernels combined in Support Vector Machine technique.
3rd International Conference on /industrial and Systems Engineering (ICISE 2017), Mashhad. [In Persian]
https://civilica.com/doc/669097