مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته مدیریت صنعتی، دانشگاه خلیج فارس، بوشهر، ایران

2 دانشیار گروه مدیریت صنعتی، دانشکده کسب و کار و اقتصاد، دانشگاه خلیج فارس، بوشهر، ایران نویسنده مسئول: gjamali@pgu.ac.ir

3 استادیار گروه مدیریت صنعتی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

تکنولوژی‌های هوشمند دور جدیدی از تغییرات را در زنجیره تأمین سنتی به ارمغان آورده‌اند. این مطالعه با هدف بررسی تأثیر اینترنت اشیاء بر مدیریت هوشمند زنجیره تأمین صورت گرفت که به ارزیابی روابط بین متغیرها و میزان اثرگذاری و اثرپذیری آن‌ها با روش نقشه شناختی فازی می‌پردازد. جامعه آماری، خبرگان دانشگاهی و کارشناسان فعال در شرکت توزیع داروپخش در استان بوشهر هستند. پس از شناسایی مؤلفه‌ها از پیشینه پژوهش، مصاحبه صورت گرفت. بدین منظور پرسشنامه به10 نفر از خبرگان وکارشناسان مربوطه ارائه شد و طی چند مرحله مورد واکاوی اطلاعات قرار گرفت که در نهایت در 9 دسته معیار و 41 زیرمعیار، عوامل اصلی کاربرد اینترنت اشیاء در زنجیره تأمین تعیین گردیدند. معیارها شـامل: مدیریت هوشمند موجودی و انبارداری، مدیریت هوشمند عملیات، مدیریت هوشمند اطلاعات، مدیریت هوشمند محصولات، مدیریت هوشمند هزینه، مدیریت هوشمند بهره‌وری شرکتی، مدیریت هوشمند مشتریان و تأمین‌کنندگان دارو، مدیریت هوشمند فروش و بازاریابی و مدیریت هوشمند محیط زیست هستند. نتایج نشان داد که ارتباط میـان کلیـه شـاخص‌هـا همسو و مثبت است. شاخص مدیریت هوشمند اطلاعات بـه عنـوان مهمترین شاخص بدست آمده است؛ زیرا بر همه شـاخص‌هـای دیگـر تأثیرگـذار اسـت. سه شـاخص مدیریت هوشمند مشـتریان، مدیریت هوشمند فروش و بازاریابی و مدیریت هوشمند عملیات در رتبه‌ی دوم تأثیرگــذاری هستند. بنابراین مدیران صنعت توزیع دارو می‌بایست با استفاده از فناوری اینترنت اشیاء به مدیریت هوشمند اطلاعات در سازمان خود، بهبود روابط با مشتریان، بهبود عملیات و تمرکز ویژه بر فرآیند فروش بپردازند و موجب بهینه-سازی فرآیندهای زنجیره تأمین و افزایش سودآوری شوند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation and analysis of intelligent supply chain management under Internet of Things technology with fuzzy cognitive map approach

نویسندگان [English]

  • fateme abadi 1
  • Gholamreza Jamali 2
  • Ahmad Ghorbanpour 3

1 Ph>d Student Of Industrial Management, Persian Gulf University, Bushehr, Iran

2 Associate Professor, Department of Industrial Management, Persian Gulf University, Bushehr, Iran Corresponding Author: gjamali@pgu.ac.ir

3 Assistant Professor, Department of Industrial Management, Persian Gulf University, Bushehr, Iran

چکیده [English]

Abstract
Smart technologies have brought changes in the supply chain. This study was conducted with the aim of investigating the impact of the Internet of Things on the intelligent management of the supply chain, which evaluates the relationships between variables and their impact and effectiveness with the fuzzy cognitive mapping method. The statistical population is academic experts and active experts in the drug distribution company in Bushehr province. After identifying the components from the background of the research, an interview was conducted. Then the questionnaire was presented to 10 experts and experts and it was analyzed in several stages, and finally, the main factors of the use of Internet of Things in the supply chain were determined in 9 categories of criteria and 41 sub-criteria. The criteria include: intelligent management of inventory and warehousing, intelligent management of operations, intelligent management of information, intelligent management of products, intelligent management of costs, intelligent management of corporate productivity, intelligent management of customers and drug suppliers, intelligent management of sales and marketing, and intelligent management of the environment.The results showed that intelligent information management was obtained as the most important indicator; Because it affects all indicators. intelligent management of customers, intelligent management of sales and marketing, and intelligent management of operations are the second most influential. Therefore, managers of the drug distribution industry should use Internet of Things technology to intelligently manage information in their organization, improve relationships with customers, improve operations and focus on the sales process, and optimize supply chain processes and profitability.

Introduction

The fourth industrial revolution, through its smart technologies, has greatly affected the management models and traditional supply chain operations (Chen & et al., 2020). Supply chains must be smarter in order to overcome their problems and complexities, such as reducing uncertainty regarding demand and delivery time, poor flow of information, costs, product quality, communicating effectively with customers, etc. (Chbaik, 2022).
 Application of the mentioned technology in the supply chain in drug distribution industry will play a very important role toward efficiency and effectiveness. In this research, by examining the indicators of Internet of Things in the supply chain, the relationship between these indicators in the supply chain in the pharmaceutical distribution company have been studied.

Literature Review

Internet of Things (IOT) refers to the connection of sensors and devices with a network through which they can interact with each other and with their users. Internet of Things integrates various sensors, objects and smart nodes that can communicate without human intervention and currently has wide applications in smart networks, healthcare and transportation (Dadhaneeya & et all, 2023).
 Tavakli Moghadam and et al (2022) investigated the use of Internet of Things (IOT) in the food supply chain (FCS) in a research. By reviewing the literature, six basic functions obtained for this type of network including transportation logistics, food production, resource management, food safety, food safety, food quality maintenance and FSC transparency were obtained. Also, a clustering method was used.
 Disin (2022), investigated the barriers to the adoption of the Internet of Things in the healthcare supply chain in India with a fuzzy approach. In this research, it is stated that the Internet of Things plays an important role in the health care supply chain. It improves the quality of patient care, reduces the cost of medical procedures, maintains flawless operations, and supports clinical decisions. This research identified and analyzed the potential barriers that prevent the healthcare industry from adopting the Internet of Things. In this research, it is stated that the legal and regulatory standards and the lack of information technology infrastructure are the main obstacles affecting the adoption of the Internet of Things in the health supply chain.

Methodology

The statistical population of this research were all academic experts, managers and experts of drug distribution in Darupakhsh Company of Bushehr province, were familiar with the concept of Internet of Things and supply chain and had related work experience and bachelor's degree or higher. Their opinions were used to determine the importance of indicators. The statistical sample for determining the relationship between indicators using the Fuzzy Cognitive Map (FCM) method was 10 out of experts.
 After identifying indicators from previous studies, a questionnaire was provided to the sample, some less important indicators were removed from the questionnaire. In the second phase questionnaire was designed and then from the point of view of the sample, 41 key indicators were identified, which were classified into 9 categories and used in the fuzzy cognitive map method.

Results

findings of this research were analyzed based on the process of creating a fuzzy cognitive map. The initial matrix of success for 9 main effective indicators in the intelligent management of the supply chain under Internet of Things technology with a case study in the drug distribution company in Bushehr province. Based on the value and points that 10 experts gave to these indicators in the range of 0 to 100, was formed and after several steps of calculation, we reached the final matrix which is related to the results.
Table 1. Final Matrix




Indicator


Factor


C1


C2


C3


C4


C5


C6


C7


C8


C9






Intelligent management of inventory and warehousing


C1


 


0.86


0.85


 


0.81


0.94


 


0.93


 




Intelligent operation management


C2


0.86


 


0.98


 


0.74


0.67


0.94


 


0.58




Intelligent information management


C3


0.85


0.98


 


0.78


0.74


0.65


0.93


0.83


 




Intelligent product management (pharmaceutical)


C4


0.67


0.78


 


 


 


 


0.78


0.74


0.57




Intelligent cost management


C5


 


0.74


 


 


 


0.77


 


0.83


0.82




Intelligent management of corporate productivity


C6


 


 


0.65


 


0.77


 


 


0.92


0.50




Intelligent management of drug customers and suppliers


C7


0.88


0.94


0.93


 


 


0.83


 


0.87


0.72




Intelligent management of sales and marketing


C8


0.93


0.83


 


0.74


0.83


0.92


 


 


0.78




Intelligent environmental management


C9


 


0.58


 


 


0.82


0.50


 


0.78


 




Based on the results presented in the final matrix, a fuzzy cognitive map diagram is drawn. It can be seen that the intelligent information management index has the greatest impact on other indices. Then, three indicators of intelligent management of customers including intelligent management of sales and marketing, and intelligent management of operations were also ranked second in terms of influence. On the other hand, four indicators of intelligent management including operations, cost, sales and marketing and productivity are the indicators that have the most influence from other indicators, the highest correlation between the index of intelligent management of information and the intelligent management of company operations with a value of 0.98 and the lowest correlation between productivity intelligent management index and environmental intelligent management index was 0.50, which are examined and analyzed in the research results section.

Conclusion

According to the obtained results, the relationship between all the indicators of the use of the Internet of Things in the supply chain of the pharmaceutical industry is consistent and positive.
With intelligent information management, the automatic decision-making process in the company is supported, and with rapid information cooperation in internal operations and cooperation with suppliers and customers, the drug distribution industry is able to respond to the environmental changes.
 Another influential indicator is the intelligent management of customers, which by using the Internet of Things in the drug distribution industry, succeeded in expanding online services and delivering products on time to the customers, focusing more on customer relationship management and receiving effective feedback on the disadvantages of products purchased by customers.
 Another influential indicator is the intelligent management of sales and marketing of products, which through an intelligent system to receive the needs of patients of medical centers and other drug applicants, lead to the improvement of the sales of the company's products and services, and respond to the market demand of pharmaceutical products and optimal management.
 Another effective indicator is the intelligent management of operations, which is optimized by using the Internet of Things in the supply chain processes of pharmaceutical companies in Bushehr province, helping to make the operations flawless and improve the production and delivery process, integrating internal, customer and supply processes, and cooperation and coordination takes place throughout the supply chain.
Acknowledgments
We are grateful to all the experts who cooperated with the researchers in the process of data collection and favored us.
Keywords: Intelligent Technologies, Intelligent Supply Chain Management, Internet of Things, Fuzzy Cognitive Map.
 
 


کلیدواژه‌ها [English]

  • Intelligent technologies
  • Intelligent supply chain management
  • Internet of Things
  • fuzzy cognitive mapping method
زمانی، سیدقاسم و شکیب منش، هدی. (1398). جایگاه اصل انتظارات مشروع در سازمان جهانی تجارت. پژوهش حقوق عمومی، 21(64)، 9-32. doi: 10.22054/qjpl .2019.21762.1513
خاکپور، براتعلی. بلوری، زهره. داوری، رقیه. (1402). تحلیل عوامل مؤثر بر میزان زیست‌پذیری محله ­های متراکم شهر بر اساس نقشه شناختی فازی (موردمطالعه شهر آمل). نشریه علمی جغرافیا و برنامه­ریزی، دوره 27، شماره 84، 45-55. doi: 10.22034/ GP.2023.14584
جمالی، غلامرضا؛ موسوی، سید اسماعیل و محمدی، معصومه. (1398). تحلیل ارتباط میان شاخص‌های کاربرد اینترنت‌اشیا در زنجیره تأمین لوازم‌خانگی با استفاده از رویکرد نقشه‌ شناختی فازی. مطالعات مدیریت کسب‌وکار هوشمند،  8(30)، 137-162.‎ doi.org/10.22054/ims.2019.10621
رشیدی تربتی، شیوا؛ رادفر، رضا و پیله‌وری، نازنین. (1400). هوشمند سازی زنجیره تأمین با رویکرد اینترنت‌اشیا (مطالعه موردی: شرکت‌های فعال در حوزه فناوری اطلاعات و ارتباطات استان تهران). فصلنامه مدیریت راهبردی در سیستم‌های صنعتی (مدیریت صنعتی سابق)، 16(58)، 14-29.‎ doi. 10.30495/IMJ.2022.688461
روزخوش، پردیس و کاظمی، مصطفی. (1401). کاربرد اینترنت‌اشیا در زنجیره‌ی تأمین سبز و بررسی عوامل مؤثر برای انتخاب تأمین‌کننده‌ی سبز: مطالعه‌ی موردی: کارخانه لاستیک‌سازی مشهد. مدیریت زنجیره تأمین، 24.‎ https://civilica.com /doc/1602855
صیادی، محمدکاظم؛ صفری، احرام و قبادی پویا، سهیلا. (1401). اولویت‌بندی کاربردهای اینترنت‌اشیا در مدیریت زنجیره تأمین با استفاده از رویکرد تصمیم‌گیری چندمعیاره و تحلیل مضمون. پژوهشنامه پردازش و مدیریت اطلاعات،37(3)، 721-748. doi.10.35050/ JIPM010.2022.147
کنگرلو حقیقی، رامین؛ طلوعی اشلقی، عباس؛ معتدل، محمدرضا. (1400). مدل مفهومی عامل بنیان سیستم پایش برخط، برای بهبود نظام توزیع دارو. مطالعات مدیریت کسب‌وکار هوشمند، 10(38)، 267-315.‎ DOI: 10.22054/IMS.2021.58644 .1904
محمدی، طاهره؛ سجادی، سیدمجتبی؛ نجفی، سیداسماعیل و تقی زاده یزدی، محمدرضا. (1401). بهینه‌سازی زنجیره تأمین هوشمند تحت سیاست‌ ‌مدیریت موجودی توسط فروشنده با رویکرد انتخاب فناوری مرتبط با اینترنت‌اشیا. مدیریت صنعتی، 14(3)،
 458-483.‎ doi.10.22059/IMJ.2022.343552.1007948
مزروعی نصرآبادی، اسماعیل. (1401). ارائه مدل عوامل کلیدی موفقیت تاب­آوری زنجیره تأمین گردشگری سلامت: رویکرد نقشه شناختی فازی. مجله مدیریت اطلاعات سلامت، سال 19، شماره 2، 79-87. https://doi.org/10.48305/him .2023.41125.1050
ولی‌مقدم زنجانی، سحر. کمالی، نقی. مجتبی­زاده، محمد. (1400). طراحی و اعتباریابی الگوی بین­المللی­سازی آموزش عالی دانشگاه­های علوم پزشکی کشور. مجله راهبردهای آموزش در علوم پزشکی، دوره 14، شماره 2، ص 49-61 http://edcbmj.ir/article-2223-1-fa.html
References
Ali, S. M., Ashraf, M. A., Taqi, H. M. M., Ahmed, S., Rob, S. A., Kabir, G., & Paul, S. K. (2023). Drivers for Internet of Things (IoT) adoption in supply chains: Implications for sustainability in the post-pandemic era. Computers & Industrial Engineering, 183, 10951,https://doi.org/ 10.1016/j.cie.2023.
Arvan, M., Omidvar, A., & Ghodsi, R. (2016). Intellectual capital evaluation using fuzzy cognitive maps: A scenario-based development planning. Expert Systems with Applications, 55, pp. 21-36. https://doi.org/ 10.1016/j.eswa.2015.12.044.
Birke, H., & Hartmann, E. (2020). Internet of Things–the future of managing supply chain risks. Supply Chain Management: An International Journal, 25.5. 535-548. https://www.emerald.com/insight/content/doi/10.1108/SCM-09-2019-0356/full/html.
Ben-Daya, M. E. (2019). "Internet of things and supply chain management: a literature review. " International Journal of Production Research 57, 15-16 (2019): 4719-4742. https://doi.org/10.1080/00207543.2017 .1402140.
Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31. https://doi.org/ 10.1016/j.comcom.2014.09.008.
Çalık, A. (2021). A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era. Soft Computing, 25, no. 3: 2253-2265. https://link.springer.com/article/ 10.1007/s00500-020-05294-9.
Chbaik, N., Khiat, A., Bahnasse, A., & Ouajji, H. (2022). The Application of Smart Supply Chain Technologies in The Moroccan Logistics. Procedia Computer Science198, https://doi.org/10.1016/ j.procs.2021.12.289, 578-583.
Chen, Z. M. (2020). Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach. Applied Soft Computing, 87, 106004. https://doi.org/ 10.1016/j.asoc.2019.106004.
Dadhaneeya, H., Nema, P. K., & Arora, V. K. (2023). Internet of things in food processing and its potential in industry 4.0 era: A review. Trends in Food Science & Technology. https://doi.org/10.1016/ j.tifs.2023.07.006.
De Vass, T., Himanshu, S., & Shah, J. (2018). The effect of “Internet of Things” on supply chain integration and performance: An organisational capability perspective. Australasian Journal of Information Systems, 22. https://doi.org/10.3127/ajis.v22i0.1734.
Desingh, V. (2022). Internet of Things adoption barriers in the Indian healthcare supply chain: An ISM‐fuzzy MICMAC approach. The International journal of health planning and management, 37, no. 1: 318-351. DOI: 10.1002/hpm.3331.
Dweekat, A. J. (2017). A supply chain performance measurement approach using the internet of things: Toward more practical SCPMS. Industrial Management & Data Systems, 117(2), 267-286. https://www.emerald .com/insight/content/doi/10.1108/IMDS-03-2016-0096/full/html.
Fleisch, E., Weinberger, M., & Wortmann, F. (2015). Business models and the internet of things. In Interoperability and Open-Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia, September 18, 2014, Invited Papers (pp. 6-10). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-319-1654 6-2_2.
Jiang, W. (2019). An Intelligent Supply Chain Information Collaboration Model Based on Internet of Things and Big Data, in IEEE Access, vol. 7, pp. 58324-58335, 2019, DOI10.1109/ACCESS.2019.2913 192.
Kuo, T. C., Chen, K. J., Shiang, W. J., Huang, P. B., Otieno, W., & Chiu, M. C. (2021). A collaborative data-driven analytics of material resource management in smart supply chain by using a hybrid Industry 3.5 strategy. Resources, Conservation and Recycling164, 105160.https://doi.org/10.1016/j.resconrec.2020.105160.
Landeta, J. (2006). Current validity of the Delphi method in social sciences. Technological forecasting and social change, V73(5), PP467-482. https://doi.org/10.1016/j.techfore.2005.09.002.
Mohamed, B.-D., Hassini, E., & Bahrou, Z. (2019). Internet of things and supply chain management: a literature review. International Journal of Production Research, 57.15-16: 4719-4742. https://doi.org/10.1080/ 00207543.2017.1402140.
Manavalan, E., & Kandasamy, J. (2019). A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Computers & Industrial Engineering, 127: 925-953. https://doi.org/10.1016/j.cie.2018.11.030.
Mostafa, N., Walaa, H., & Hisham, A. (2019). Impacts of internet of things on supply chains: a framework for warehousing. Social sciences, 8, no. 3:p 84. https://doi.org/10.3390/socsci8030084.
Nozari, H., Ghahremani-Nahr, J., Fallah, M., & Szmelter-Jarosz, A. (2022). Assessment of cyber risks in an IoT-based supply chain using a fuzzy decision-making method. International Journal of Innovation in Management, Economics and Social Sciences, 2, no.p 1. DOI: https://doi.org/10.52547/ijimes.2.1.52.
Pang, Z., Chen, Q., Han, W., & Zheng, L. (2015). Value-centric design of the internet-of-things solution for food supply chain: Value creation, sensor portfolio and information fusion. Information Systems Frontiers17, 289-319. https://link.springer.com/article/10.1007/s10796-012-9374-9.
Prajapati, D., Chan, F., Chelladurai, H., Lakshay, L., & Pratap, S. (2022). An Internet of Things Embedded Sustainable Supply Chain Management of B2B E-Commerce. Sustainability, 14, no. 9 : 5066. https://doi.org/ 10.3390/su14095066.
Rejeb, A. J. (2019). Leveraging the internet of things and blockchain technology in supply chain management. Future Internet, 11, no. 7: 161. https://doi.org/10.3390/fi11070161.
Rodriguez-Repiso, L., Setchi, R., & Salmeron, J. (2007), Modelling IT projects success with Fuzzy Cognitive Maps. Expert Systems with Applications,32,pp.543-559. https://doi.org/10.1016/j.eswa.2006.01 .032.
Rosdi, M. N. H. M., Mahmood, W. H. W., Razik, M. A., & Kamat, S. R. (2021). Fuzzy analytic hierarchical process implementation on enhancing manufacturing responsiveness. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues. 2021.10.006.
Salih, K., Rashid, T., Radovanovic, D., & Bacanin, N. (2022). A comprehensive survey on the Internet of Things with the industrial marketplace. Sensors 22, no. 3: 730. https://doi.org/10.3390/s220 30730.
Tavakkoli-Moghaddam, R., Ghahremani-Nahr, J., Samadi Parviznejad, P., Nozari, H., & Naja, E. (2022). Application of internet of things in the food supply chain: a literature review. Journal of applied research on industrial engineering, 9(4): 475-492. https://doi.org/10.22105/jarie. 2021.301205.1368.
Xirogiannis G., S. J. (2004). A fuzzy cognitive map approach to support urban design. Expert Systems with Applications. V26, PP 257-268. https://doi.org/10.1016/S0957-4174(03)00140-4.
Yadav, S., Sunil, L., & Dixit, G. (2021). Modelling Internet of things (IoT)-driven global sustainability in multi-tier agri-food supply chain under natural epidemic outbreaks. Environmental Science and Pollution Research, 28: 16633-16654. https://link.springer.com/article/10.1007/ s11356-020-11676-1.
References [In Persian]
Jamali, Gh., Mousavi, S., & Mohammadi, M. (2018). Analyzing the relationship between Internet of Things usage indicators in the supply chain of home appliances using the fuzzy cognitive mapping approach. Smart Business Management Studies, 8(30), 137-162. https://doi.org/10.22054/ims.2019.10621 [in Persian].
Mazrouei Nasrabadi, I. (1401). Presenting a model of the key success factors of health tourism supply chain resilience: a fuzzy cognitive map approach. Journal of Health Information Management, Year 19, Number 2, 79-87. https://doi.org/10.48305/him.2023.41125.1050. [in Persian].
Mohammadi, T., Sajjadi, S., Najafi, S., & Taghizadeh Yazdi, M. (1401). Optimizing the smart supply chain under the inventory management policy by the seller with the approach of choosing the technology related to the Internet of Things. Industrial Management, Volume 14, Number 3, 458-483. doi.10.22059/IMJ.2022.343552.1007948. [in Persian].
Rashidi Torbati, Sh., Radfer, R., & Pilehvari, N. (1400). Smartening the supply chain with the Internet of Things approach (case study: companies active in the field of information and communication technology in Tehran province). Strategic management quarterly in industrial systems (former industrial management), 14-29. doi. 10.30495/IMJ.2022.688461 [in Persian].
Roozkhosh, P., & Kazemi, M. (1401). The application of Internet of Things in the green supply chain and the investigation of the effective factors for choosing a green supplier: a case study: Mashhad Rubber Factory. Supply chain management, 24. 61-73. https://civilica.com/doc/ 1602855. [in Persian].
Sayadi, M., Safari, A., & Qobadi Poua, S. (1400). Prioritization of IoT applications in supply chain management using multi-criteria decision-making approach and theme analysis. Journal of information processing and management, 37(3), 721-748. doi.10.35050/JIPM 010.2022.147. [in Persian].
Kangerlo Haghighi, R; Toloui Ashlaghi, A; Motadel, Mohammadreza. (1400). Conceptual model of the basis of the online monitoring system to improve the drug distribution system. Smart Business Management Studies, 10(38),267-315.‎. DOI: 10.22054/IMS.2021.58644.1904. [in Persian].
Khakpour, B; Crystal, V; Judgement, R. (1402). Analysis of factors affecting the livability of dense city neighborhoods based on fuzzy cognitive map (case study of Amol city). Scientific Journal of Geography and Planning, Volume 27, Number 84, 45-55. doi: 10.22034/GP.2023 .14584. [in Persian].
Valimqadam Zanjani, Sahar. Kamali, Naghi. Mojtabizadeh, Mohammad. (1400). Designing and validating the model of internationalization of higher education of medical sciences universities of the country. Journal of Education Strategies in Medical Sciences, Volume 14, Number 2, pp. 49-61. http://edcbmj.ir/article2223-1-fa.html. [in Persian].
Zamani, S and Shakib Menesh, H. (2018). The position of the principle of legitimate expectations in the World Trade Organization. Public Law Research, 21(64), 9-32. doi: 10.22054/qjpl.2019.21762.1513. [in Persian].