مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه صنعتی و فناوری دانشگاه تهران، ایران

2 کارشناس ارشد مدیریت فناوری اطلاعات دانشکدگان فارابی دانشگاه تهران ، ، ‌ایران نویسنده مسئول: jafarim71@ut.ac.ir

3 استادیار گروه صنعتی و فناوری دانشگاه تهران، ایران

چکیده

هوش مصنوعی فرصت های کم نظیری، برای ارتقای عملکرد صنایع مختلف از جمله صنعت خودروسازی فراهم میکند. مطالعه حاضر به دنبال شناسایی کاربردها و الزامات بکارگیری هوش مصنوعی در محصولات نوین خودروسازی همچون خودروهای خودران با کسب نظر از مدیران و کارکنان شرکت های خودروسازی داخلی از طریق پیشبرد مصاحبه نیمه ساختاریافته و تحلیل مضمون می‌باشد. افراد مصاحبه شونده شامل 11مدیر و 17 کارمند بودند که از این تعداد 15 نفر دارای مدرک کارشناسی و 11 نفر داری مدرک ارشد و 2 نفر داری مدرک دکتری بودند.پس از پیاده سازی متن مصاحبه ها و تحلیل و کدگذاری آنها به روش تحلیل مضمون، در بخش کاربردها 21 کد و در بخش الزامات 26 کد شناسایی گردید. پس از انجام 28 مصاحبه اشباع نظری حاصل شد .از کدهای شناسایی شده در بخش کاربردها میتوان به خودروهای خودران و دستیارصوتی، حمل ونقل اشتراکی و در بخش الزامات میتوان به تخصیص منابع،کارکنان متخصص و تشکیل تیم اشاره کرد. با توجه به تنوع کاربرد هوش مصنوعی در محصولات نوین خودرو و طبق الزامات مشخص شده با توجه به نظرات خبرگان، توسعه بستر مناسب برای فناوری‌های سخت و نرم به صورت یکپارچه؛ و پشتیبانی دولتی با توجه به ایجاد زیرساخت‌های قانونی می‌تواند مسیر توسعه فناوری حاضر را بهبود بخشد. مسلماً برای ایجاد زمینه عملکرد موفق هوش مصنوعی در خودروسازی باید با دیدگاه نظام‌مند، کلیه اثرات بکارگیری آن را از ابعاد مختلف فرهنگی، اجتماعی در نظر آورد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identifying the applications and requirements of using artificial intelligence in new automotive products

نویسندگان [English]

  • Seyed Mohammad Mahmoudi 1
  • Mohammad Jafari 2
  • mahsa Pishdar 3

1 Associate Professor, Industrial and Technology Department, University of Tehran, Iran

2 Master of Information Technology Management, Farabi Campus University of Tehran, Iran Corresponding Author: jafarim71@ut.ac.ir

3 Assistant Professor, Industrial and Technology Department, University of Tehran, Iran

چکیده [English]

 
Artificial intelligence provides unique opportunities to improve the performance of various industries, including the automotive industry. The present study seeks to identify the applications and requirements of using artificial intelligence in new automotive products such as self-driving cars by obtaining opinions from managers and employees of domestic automotive companies through semi-structured interviews and thematic analysis. The interviewees included 11 managers and 17 employees, of which 15 had a bachelor's degree, 11 had a master's degree, and 2 had a doctorate degree. 21 codes were identified in the applications section and 26 codes were identified in the requirements section. After conducting 28 interviews, theoretical saturation was achieved. From the codes identified in the applications section, self-driving cars and voice assistants, shared transportation, and resource allocation, expert staff, and team formation can be mentioned in the requirements section. Considering the variety of artificial intelligence applications in new car products and according to the specified requirements according to the opinions of experts, the development of a suitable platform for hard and soft technologies in an integrated manner; And government support regarding the creation of legal infrastructure can improve the development path of the current technology. Of course, in order to create a context for the successful operation of artificial intelligence in the automotive industry, all the effects of its application from different cultural and social aspects should be considered with a systematic perspective.

Introduction

Artificial intelligence has enormous potential to reduce the problems of automakers around the world. Nevertheless, reports show that between 2017 and 2019, the number of automobile manufacturers that consciously refrained from using artificial intelligence and related technologies such as machine learning and neural networks in the production and supply of new products such as connected and autonomous cars have done so; it has only increased from 26% to 39% (Gandhi et al., 2022).
The lack of attention to the complexities of artificial intelligence and the acceleration of the use of this technological tool have caused the failure of automobile manufacturers' plans to provide intelligent products (Fernandes et al., 2022). Despite the applications and benefits of artificial intelligence in automotive services, there are still many ambiguous aspects regarding the use cases and prerequisites that different researches have addressed from a specific perspective, and the lack of a framework consistency in this area is felt. For example, Gupta and colleagues (2021) argue in their research that cars equipped with artificial intelligence technology are not capable of evaluating and classifying their environment on their own.
The present study aims to identify applications and requirements related to the use of artificial intelligence in new automotive products, such as self-driving cars. Therefore, the results of this study can be useful to automobile manufacturers trying to revitalize the potential and improve their products in the field of using artificial intelligence.
Research Question(s)
In this regard, in order to achieve the objectives of the research, a fundamental question is posed:
“What are the requirements and prerequisites for using artificial intelligence in the delivery of new products such as autonomous and connected cars"?
Literature Review
The applications of artificial intelligence in automotive products can be divided into two categories: personal applications and social applications. Personal applications refer to products designed with two elements of security and convenience for users in mind. These applications include cruise control, automatic parking, voice assistant, alert systems, and route suggestion systems, all of which manifest in self-driving cars (Paliotto et al., 2022). Social applications refer to products whose effects include all members of society. For example, self-driving cars and cars equipped with artificial intelligence will reduce urban congestion or reduce the need for parking. These cars also play an effective role in transporting disabled and vulnerable people. Other social applications include the role of these cars in reducing environmental pollution and shared transportation (Zhang et al).
Regarding the requirements and prerequisites for the use of artificial intelligence in modern automotive products, various researches have been carried out, among which we will cite only a few examples below:
- Barzegar and Elham (2019), using a descriptive-analytical approach, the criminal liability of the user of self-driving cars in accidents was discussed.
- Demlehner et al. (2021) conducted a study to identify 20 applications of artificial intelligence in the production of intelligent and autonomous cars and to examine these applications from the two dimensions of business value and realizability.
- Othman (2022) studied the requirements for the use of artificial intelligence in automotive products, such as cruise control, warning systems and self-driving cars, and studied its consequences from the point of view security, the economy and society, etc.

Methodology

This research is”an applied research”in terms of purpose and a descriptive survey in terms of data collection. The information collection method is a survey and semi-structured interview with experts. The experts include two categories of managers and senior employees from the research and development department of interior automakers who have more than five years of work experience and are familiar with artificial intelligence. In order to collect samples, semi-structured interviews were conducted with the target people in person or in person using the snowball method.
The method of data analysis in this research is thematic analysis; so, after implementing the text of the interviews and analyzing and coding it with the thematic analysis method, 21 codes were identified in the applications section and 26 codes were identified in the requirements section. After carrying out 28 interviews, theoretical saturation was reached. From the codes identified in the applications section we can refer to self-driving cars, voice assistant, and in the requirements section we can refer to resource allocation, specialized personnel.

Results

The main goal of this research was to identify the applications and requirements related to the use of artificial intelligence in new car products, such as self-driving cars. According to the review and analysis of the interviews with the thematic analysis method, the research results were determined into two groups:
In the first group, applications of artificial intelligence in new products of automobile manufacturers were identified, such as self-driving cars, cruise control and warning systems, among which, according to the interviews, self-driving cars were the most important. Therefore, in this research, emphasis was placed on identifying key applications, which were separated into two dimensions: personal and social applications; In this regard, a total of 21 applications were identified.
In the second group, the requirements and prerequisites of artificial intelligence were classified, and due to the dispersion of results in previous research, a great effort was made to integrate the requirements. In this regard, the requirements of artificial intelligence are divided into six general categories, which are: 1- road infrastructure, 2- technical infrastructure and equipment, 3- knowledge, 4- users, 5- the role of managers, 6- culture, Rules. Therefore, as far as possible, in this category, fundamental requirements such as society, individual, technology and knowledge have been taken into account.
In short, taking into account the diversity of applications of artificial intelligence in modern automotive products, it can be concluded that, according to the established requirements and opinions of experts, the development of a suitable and integrated platform of hard technologies and soft law requires serious support from the government and attention to the creation of legal infrastructure. Therefore, we suggest that policy makers and managers of the automobile industry, in order to facilitate the technological development and optimal use, and successful application of artificial intelligence in the automobile industry, should all first systematize their point of view, and pay particular attention to the necessary infrastructure and consider different dimensions such as technical, cultural, social, etc.
Keywords: Artificial intelligence, applications and requirements, new products, self-driving cars..
 
 
 

کلیدواژه‌ها [English]

  • Artificial intelligence
  • applications and requirements
  • new products
  • self-driving cars
افندی زاده، شهریار.، جعفری، رضا و کلانتری، نوید. (1400). تأثیر خودروهای خودران شخصی و اشتراکی بر روی انتخاب مد سفر با اهداف متفاوت با توجه به تغییرات سه متغیر زمان سفر، هزینه پارکینگ و هزینه بهره‌برداری (مطالعه موردی: شهر قم). پژوهشنامه حمل‌ونقل، 18(3 (پیاپی 68))، 29-40.
برزگر، محمدرضا و الهام، غلامحسین. (1399). مسئولیت کیفری کاربر خودروی خودران در قبال صدمات وارده توسط آن‌. فصلنامه پژوهش حقوق کیفری، 8(30), 201-229.
حیدری شهباز، شیرزاد.، ‌محبی، محسن و سیفی زیناب، غلامعلی. (1400). سازوکار جبران خسارت ناشی از سوانح خودروهای خودران در حقوق ایران با نگاهی بر دکترین آمریکایی جبران خسارت ناشی از این خودروها. مجله حقوقی دادگستری.
حنیفی، حمید، آذر، عادل و منطقی، منوچهر. (1401). تحلیل اثر متقابل بازیگران خودروی بدون راننده با روش آینده‌نگاری. فصلنامه توسعه تکنولوژی صنعتی، 20(49), 63-78. https: //doi. org/10. 22034/jtd. 2022. 252859
خسرویان، امیر، مسیح طهرانی، مسعود و امیرخانی، عبداله. (1397). مرور چالش‌های خودروهای خودران مجهز به حسگر دید اولین همایش بین‌المللی قوای محرکه نوین (با محوریت خودروهای برقی(.
رضایی، روح اله، صالحی مازندرانی، محمد و حدادزاده شکیبا، علی. (1400). چالش‌های اجتماعی-حقوقی وسایل نقلیه خودران (بدون راننده) و سیاستهای موجود در قبال آن‌ها. پژوهشنامه حمل‌ونقل، 18(2 (67 پیاپی))، 215-236.
عطازاده، سعید و انصاری، جلال. (1399). بازپژوهی مفهوم مسئولیت کیفری هوش‌مصنوعی (مطالعه موردی خودروهای خود ران) در حقوق اسلام، ایران، آمریکا و آلمان. پژوهش تطبیقی حقوق اسلام و غرب، 6(4), 55-86
عباس زاده، محمد. (2012). تأملی بر اعتبار و پایایی در تحقیقات کیفی. جامعه‌شناسی کاربردی، 23(1), 19-34
علوی، سعیده، نظم فر، حسین و حسن‌زاده، محمد. (1401) بررسی وضعیت نوآوری ایران در مقایسه با کشورهای منتخب سند چشم‌انداز 1404. سیاست‌های راهبردی و کلان، 10(39), 444-474
References
Aldhyani, T. H. H. , & Alkahtani, H. (2022). Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors, 22(1), 360. https: //www. mdpi. com/1424-8220/22/1/360
 Ayoub, J., & Zhou, F. (2020). Investigating drivers’ trust in autonomous vehicles’ decisions of lane changing events. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64, 1274-1278. https: //doi. org/10. 1177/1071181320641303
Blagoj, D., Chrysi, T., & Uros, K. (2020). Historical Evolution of Artificial Intelligence: Analysis of the three main paradigm shifts in AI.
Demlehner, Q., Schoemer, D., & Laumer, S. (2021). How can artificial intelligence enhance car manufacturing? A Delphi study-based identification and assessment of general use cases. International Journal of Information Management, 58, 102317. https: //doi. org/10. 1016/j. ijinfomgt. 2021. 102317
Di Vaio, A., Hassan, R., & Alavoine, C. (2022). Data intelligence and analytics: A bibliometric analysis of human-Artificial intelligence in public sector decision-making effectiveness. Technological Forecasting and Social Change, 174, 121201. https: //doi. org/10. 1016/j. techfore. 2021. 121201
Donthi, S. R., Sandeep, V., Reddy, M. G., Bhatt, M., Kumar, H. S., & Jayanth, D. (2022). Self-Driving Car Using Image Processing and Deep Learning. International Journal of Research in Engineering, Science and Management, 5(1), 270-277. https: //journal. ijresm. com/index. php/ijresm/article/view/1723
Elbardan, H., & Kholeif, A. O. R. (2017). An Interpretive Approach for Data Collection and Analysis.
Fernandes, M., Corchado, J. M., & Marreiros, G. (2022). Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review. Applied Intelligence, 52(12), 14246-14280. https: //doi. org/10. 1007/s10489-022-03344-3
Gandhi, M. K., Chaudhari, C., & Ghosh, K. (2022). To study the challenges faced in application of artificial intelligence in automobile industry. AIP Conference Proceedings, 2519(1), 030013. https: //doi. org/10. 1063/5. 0111115
Giampieri, A., Ling-Chin, J., Ma, Z., Smallbone, A., & Roskilly, A. P. (2020). A review of the current automotive manufacturing practice from an energy perspective. Applied energy., 261, 114074. http: //dro. dur. ac. uk/29905/
Golubev, K. (2019). ARTIFICIAL INTELLIGENCE EVOLUTION. https: //doi. org/10. 13140/RG. 2. 2. 29362. 76489
Gupta, A., Guan, L., & Khwaja, A. (2021). Deep Learning for Object Detection and Scene Perception in Self-Driving Cars: Survey, Challenges, and Open Issues. Array, 10, 100057. https: //doi. org/10. 1016/j. array. 2021. 100057
Hansson, S. O., Belin, M. -A., & Lundgren, B. (2021). Self-Driving Vehicles—an Ethical Overview. Philosophy & Technology, 34. https: //doi. org/10. 1007/s13347-021-00464-5
Iyer, L. S. (2021). AI enabled applications towards intelligent transportation. Transportation Engineering, 5, 100083. https: //doi. org/https: //doi. org/10. 1016/j. treng. 2021. 100083
Myr, R. K., Bere, E., & Øverby, N. C. (2015). Test-retest reliability of a new questionnaire on the diet and eating behavior of one year old children. BMC Research Notes, 8(1), 16. https: //doi. org/10. 1186/s13104-014-0966-y
Nagra, A. (2021). An Overview of Artificial Intelligence in Automobile Industry -A Case Study on Tesla Cars.
Othman, K. (2022). Exploring the implications of autonomous vehicles: a comprehensive review. Innovative Infrastructure Solutions, 7(2), 165. https: //doi. org/10. 1007/s41062-022-00763-6
Paliotto, A., Alessandrini, A., Mazzia, E., Tiberi, P., & Tripodi, A. (2022). Assessing the Impact on Road Safety of Automated Vehicles: An Infrastructure Inspection-Based Approach. Future Transportation, 2(2), 522-540. https: //www. mdpi. com/2673-7590/2/2/29
Parekh, D., Poddar, N., Rajpurkar, A., Chahal, M., Kumar, N., Joshi, G. P., & Cho, W. (2022). A Review on Autonomous Vehicles: Progress, Methods and Challenges. Electronics, 11(14), 2162. https: //www. mdpi. com/2079-9292/11/14/2162
Sayrs, L. (1998). InterViews: An Introduction to Qualitative Research Interviewing: Steinar Kvale. Thousand Oaks, CA: Sage, 1996. 326 pp. The American Journal of Evaluation, 19, 267–270. https: //doi. org/10. 1016/S1098-2140(99)80208-2
Silverman, D. (2017). How was it for you? The Interview Society and the irresistible rise of the (poorly analyzed) interview. Qualitative Research, 17, 144-158. https: //doi. org/10. 1177/1468794116668231
Thorsteinson, T. J. (2018). A meta-analysis of interview length on reliability and validity. Journal of Occupational and Organizational Psychology, 91(1), 1-32. https: //doi. org/https: //doi. org/10. 1111/joop. 12186
Ushakov, D., Dudukalov, E., Shmatko, L., & Shatila, K. (2022). Artificial Intelligence as a factor of public transportations system development. Transportation Research Procedia, 63, 2401-2408. https: //doi. org/10. 1016/j. trpro. 2022. 06. 276
Wilhelmy, A., Roulin, N., & Wingate, T. G. (2020). Does It Take Two to Tango? Examining How Applicants and Interviewers Adapt Their Impression Management to Each Other. Journal of Business and Psychology, 1-24.
References [In Persian]
Abbaszadeh, M. (2012). A reflection on validity and reliability in qualitative research. Applied Sociology, 23(1), 19-34
Alavi, S., Nazmfar, H. and Hassanzadeh, M. (2022). Investigating the state of innovation in Iran compared to the selected countries of Vision Document 1404. Strategic and macro policies, 10(39), 444-474.
Abbaszadeh, Mohammad. (2012). A reflection on validity and reliability in qualitative research. Applied Sociology, 23(1), 19-34
Atzadeh, S. and Ansari, J. (2020). Researching the concept of criminal responsibility of artificial intelligence (case study of self-driving cars) in Islamic law, Iran, America and Germany. Comparative research of Islamic and Western law, 6(4), 55-86
Barzegar, M & Elham, G. (2020). The criminal responsibility of the user of the self-driving car for the injuries caused by it. Criminal Law Research Quarterly, 8(30), 201-229.
Effendizadeh, Shahryar, Jafari, Reza, and Kalantari, Navid. (1400). The effect of private and shared self-driving cars on the choice of travel mode with different goals according to the changes of three variables: travel time, parking cost and operation cost (case study: Qom city). Research Journal of Transportation, 18(3) serial (68), 29-40. SID. https: //sid. ir/paper/992573/fa
Heydari Shahbaz, S., Mohebi, M. and Saifi, G. (2021). Mechanism of compensation for damages caused by self-driving car accidents in Iranian law with a look at the American doctrine of compensation for damages caused by these cars. Legal Journal of Justice.
Hanifi, Hamid, Azar, Adel, & Rogi, Manouchehr. (1401). Analysis of the interaction effect of driverless car actors with the prospective method. Industrial Technology Development Quarterly, 20(49), 63-78. doi: 10. 22034/jtd. 2022. 252859
Khosrovian, A., Masih Tehrani, M. and Amirkhani, A. (2017). Reviewing the challenges of self-driving cars equipped with a vision sensor, the first international conference on modern propulsion forces (with a focus on electric vehicles.
Rezaei, Ruhollah, Salehi Mazandarani, Mohammad, & Haddadzadeh Shakiba, Ali. (1400). Socio-legal challenges of self-driving vehicles (without a driver) and existing policies towards them. Research Journal of Transportation, 18(2), 215-236. doi: 10. 22034/tri. 2021. 92598
Masafi, H., Sharq, M. and Hosseini, F. (2016). Examination of hardware and software requirements in the production of self-driving cars of the 5th International Conference on Electrical and Computer Engineering.