نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری رشته مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 استاد، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران نویسنده مسئول : r.radfar@srbiau.ac.ir
3 دانشیار، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
هدف این تحقیق بررسی عوامل موثر در پیش بینی عملکرد تحصیلی دانشجویان مقطع کارشناسی در طبقه بندی چهار کلاسه می باشد. برای دستیابی به این هدف، مطالعه از روش داده کاوی کریسپ پیروی می کند. مجموعه داده ها از سیستم آموزشی ناد برای مقطع کارشناسی در دانشگاه شاهد برای ورودی سال های 1390 تا 1400 استخراج شده است. تعداد 1468 رکورد در داده کاوی استفاده شده است. ابتدا شاخصهای مؤثر بر عملکرد تحصیلی دانشجویان استخراج شد. مدلسازی با استفاده از ابزار رپیدماینر9.9 انجام شد. برای بهبود عملکرد طبقهبندی و دقت پیشبینی رضایتبخش ، از ترکیبی از تجزیه و تحلیل مؤلفه اصلی همراه با الگوریتم های یادگیری ماشین و تکنیکهای انتخاب ویژگی و الگوریتمهای بهینهسازی استفاده میکنیم. عملکرد مدلهای پیشبینی با استفاده از اعتبارسنجی متقاطع 10 برابری تأیید شده است. نتایج نشان داد که الگوریتم درخت تصمیم بهترین الگوریتم در پیشبینی عملکرد دانشجویان با دقت 84.71 درصد است. این الگوریتم به درستی فارغ التحصیلی 77.88 درصد از دانشجویان عالی و 85.26 درصد از دانشجویان خوب و 84.69 درصد از دانشجویان متوسط و 85.96 درصد از دانشجویان ضعیف را بر اساس معدل نهایی پیش بینی کرد.متغیر معدل دیپلم بیشترین تأثیر را در پیشبینی عملکرد دانشجویان دارد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Predicting students' performance using machine learning algorithms and educational data mining (a case study of Shahed University)
نویسندگان [English]
- Mozhdeh Salari 1
- Reza Radfar 2
- Mahdi Faghihi 3
1 Ph.D. Student of Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor of Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran Corresponding Author: r.radfar@srbiau.ac.ir
3 Associate Professor of Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]
Abstract
The purpose of this research is to investigate the effective factors in predicting the academic performance of undergraduate students in the classification of four classes. To achieve this goal, the study follows the CRISP data mining method. The data set was extracted from the NAD educational system for the bachelor's degree in Shahed University for the entry of the years 2011 to 2021. 1468 records were used in data mining. First, the effective features on students' academic performance were extracted. Modeling was done using Rapidminer9.9 tool. To improve classification performance and satisfactory prediction accuracy, we use a combination of principal component analysis combined with machine learning algorithms and feature selection techniques and optimization algorithms. The performance of the prediction models is verified using 10-fold cross-validation. The results showed that the decision tree algorithm is the best algorithm in predicting students' performance with an accuracy of 84.71%. This algorithm correctly predicted the graduation of 77.88% of excellent students, 85.26% of good students, 84.69% of medium students, and 85.96% of weak students based on the final GPA.
Introduction
The main problem in this research is to identify the factors that are effective in predicting the academic performance of undergraduate students in Shahed University. Choosing the best machine learning algorithm in predicting academic performance among different modeling methods based on validation and evaluation of models is another issue in the present research. The purpose of this research is to investigate the effective factors in predicting the academic performance of undergraduate students in Shahed University using educational data mining based on classification models.
Research questions
The main question in this research is what factors affect the prediction of undergraduate students' performance and improving their performance?
Sub questions
1- Which modeling algorithms have better results in predicting student performance?
2- What methods have been used to predict students' performance?
3- What is the validity of the developed model for Shahed University students?
2- Research background
1-2- Theoretical foundations
Educational data mining
The processing of educational data improves the prediction of student behavior and new approaches to educational policies (Capuano & Toti, 2019) (Viberg et al., 2018)
Academic performance
Academic performance of students means the extent to which they achieve educational goals (Banik & Kumar, 2019).
2-2- review of past studies
The highlighted cells in Table 1, based on past research, show the classification algorithms that have the most accuracy and effectiveness in predicting students' performance in the relevant research. The decision tree algorithm has been used the most in previous researches. The NB algorithm has been the most used in research after the decision tree. RF and ANN algorithms are next in use. After that, SVM and KNN algorithms have been used in research
Table 1. The results of research literature based on the use of classification algorithms
Data mining algorithm
DT
RF
NB
KNN
SVM
ANN
Line RL
LR
Accuracy
(Batool et al., 2023)
*
*
(Marjan et al., 2023)
*
*
*
*
*
*
(Abdelmagid & Qahmash, 2023)
*
*
*
*
(Manoharan et al., 2023)
*
*
*
*
*
(Alghamdi & Rahman, 2023)
*
*
*
99.34%
(Alboaneen et al., 2022)
*
*
*
*
*
(Yağcı, 2022)
*
*
*
*
*
70-75%
(Dabhade et al., 2021)
*
*
*
83.44%
(Najafi & etal,2021)
*
95%
(Soltani & etal,2021)
*
*
*
(Cruz-Jesus et al., 2020)
*
*
*
*
50-81%
(Sokkhey & Okazaki, 2020)
*
*
*
*
(Rebai et al., 2020)
*
*
(Jayaprakash et al., 2020)
*
*
*
(Zulfiker et al., 2020)
*
*
*
(Musso et al., 2020)
*
(Waheed et al., 2020)
*
85%
(Salal & Abdullaev, 2019)
*
*
*
*
*
(Turabieh, 2019)
*
*
*
*
(Xu et al., 2019)
*
*
*
(ghodoosi & etal,2019)
*
*
(fadavi & etal,2019)
*
95.84%
(Ajibade et al., 2019)
*
*
*
*
91.5%
(Ahmad & Shahzadi, 2018)
*
85%
(Hasani & Bazrafshan, 2018)
*
*
(Hussain et al., 2018)
*
*
*
*
(Umer et al., 2017)
*
*
*
*
*
(Khasanah, 2017)
*
*
(Asif et al., 2017)
*
(Hoffait & Schyns, 2017)
*
*
*
92.34%
(khosravi &etal,2017)
*
*
(Mueen et al., 2016)
*
*
*
86%
(Amrieh et al., 2015)
*
*
*
(Yehuala, 2015)
*
*
92.34%
(zahedi & etal,2015)
*
*
*
(Punlumjeak & Rachburee, 2015)
*
(Osmanbegović et al., 2014)
*
*
71%
(Shamloo & et al.,2014)
*
(Asadi & et al.,2013)
*
(Kabakchieva, 2013)
*
*
*
60-75%
(Oskouei & Askari, 2014)
*
*
*
*
96%
(Nghe et al., 2007)
*
*
present research
*
*
*
*
*
*
94.17%
3- Method
This study follows the popular training data mining method CRISP. The data collection of Nad educational system for bachelor's degree in non-medical fields of Shahed University has been extracted from 2011 to 2021. We used the Label Encoder technique to encode the features. In this research, C4.5 and ID3 decision tree classification algorithms, random forest, Naïve Bayes, k-nearest neighbor and artificial neural network and gradient enhanced tree were used to analyze and classify students and predict the final GPA. Modeling was done using RapidMiner 9.9. To improve the classification performance and solve the misclassification problem, we use a combination of principal component analysis and feature selection techniques and optimization algorithms. In this research, prediction accuracy was evaluated using 10-fold cross-validation method for all algorithms. Also, different algorithms were compared using the analytical descriptive method and based on evaluation criteria, and the best prediction model was introduced in this research.
4-Data analysis
4-1 Introduction
The best model is the model that has the best values for the selected performance measurement criteria(Lever et al., 2016). Figure 1 is a graph that compares the accuracy of the algorithms used in this research.
Figure 1. Comparative chart of the accuracy of the algorithms
According to Table 2, the DTC4.5 algorithm is able to predict the class of 1235 objects out of 1458, which gives it an accuracy value of 84.71%.
Table 2. Confusion matrix of DT C4.5-GI&OSE research model
precision
Students with poor performance
Students with average performance
Students with good performance
Students with excellent performance
78.64%
0
0
22
81
Prediction 1
78.67%
9
49
295
22
Prediction 2
86.46%
50
498
27
1
Prediction 3
89.36%
361
41
2
0
Prediction 4
85.95%
84.69%
85.26%
77.88%
Recall
4-2 important features
The prioritization of predictive variables based on their weight is as follows:
Diploma GPA: 0.262
Semester 1 GPA: 0.201
Semester 2 GPA: 0.197
Number of honors semesters: 0.122
Conditional number: 0.114
Year of entry: 0.104
4-3 The results of the implementation of the student performance prediction model
The results of the prediction model are shown in Table 3:
Table 3. The results of the DT C4.5-GI&OSE model implementation
5- Discussion
In the main method of research, namely DT C4.5-GI&OSE, in the classification mode of four classes, it is observed that the average of the diploma has the greatest effect on the process of predicting student performance. In response to the sub-question of a research, the best algorithm in the four-class mode is Decision Tree C4.5-GI&OSE with a prediction accuracy of 84.71. This model showed 84.17% accuracy, 83.42% sensitivity and 0.780 kappa. DT C4.5-GI&OSE technique correctly predicted the graduation of 77.88% of excellent students, 85.26% of good students, 84.69% of average students, and 85.96% of poor students.
6-Conclusion
The obtained results show that there is a relationship between students' social and academic characteristics and their academic performance. DT C4.5-GI&OSE algorithm was the best algorithm for predicting the final GPA scores of students at the end of studies with a prediction accuracy of 84.71%. In this model, the average grade point average of the diploma has the greatest effect on the prediction process. Using machine learning models as a decision support tool improves the academic level of students and reduces the number of potential unsuccessful and dropout students. This study was carried out at the undergraduate level, which can be used in future research for the master's and doctoral level.
Keywords: student performance prediction, data mining, machine learning, modeling, improving the quality of education
کلیدواژهها [English]
- student performance prediction
- data mining
- machine learning
- modeling
- improving the quality of education
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.
استناد به این مقاله: سالاری، مژده.، رادفر، رضا.، فقیهی، مهدی. (1403). پیشبینی عملکرد دانشجویان با استفاده از الگوریتمهای یادگیری ماشین و دادهکاوی آموزشی (مطالعه موردی دانشگاه شاهد)، مطالعات مدیریت کسب وکار هوشمند، 12(47)، 315-366. DOI: 10.22054/ims.2023.75523.2375
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
نجفی محمود.، افضلی، مهدی.، مرادی، محمود. (1400). کاربرد دادهکاوی آموزشی جهت شناسایی عوامل مؤثر بر افت تحصیلی دانش آموزان. فصلنامه سیستمهای پردازشی و ارتباطی چندرسانهای هوشمند.
سلطانی، ستاره.، جاودانی گندمانی، تقی. (1400). مقایسه تحلیلی عملکرد الگوریتمهای دادهکاوی در پیشبینی پیشرفت تحصیلی دانشجویان. دومین کنفرانس ملی آخرین دستاوردهای مهندسی داده و دانش و محاسبات نرم
رئیسی وانانی، سینا.، رئیسی وانانی، ایمان.، تقوی فرد، محمدتقی. (1399). مدلی برای بخش بندی یادگیرندگان و بهبود عملکرد آموزشی با استفاده از الگوریتمهای دادهکاوی. نشریه علمی مطالعات مدیریت کسبوکار هوشمند، سال نهم، شماره 33 -38- 5
فدوی رودسری، آزاده.، صالحی، کیوان.، خدایی، ابراهیم.، مقدم زاده، علی.، جوادیپور، محمّد. (1398). مدل شبکه بیزی عوامل مرتبط با افت تحصیلی دانشجویان دانشگاه تهران، مجله علوم روانشناختی، ۱۸ (۷۶): ۴۲۹-۴۱۷
خسروی، هادی .، شفیعی، ریحانه.(1396). پیش بینی عملکرد دانش آموزان با استفاده از داده کاوی، دانشکده مهندسی کامپیوتر.
شاملو، رسول.، امید، منوچهر.، امین فر، فائزه. (1393). بررسی پیشبینی رفتار آموزشی دانشجویان با رویکرد دادهکاوی در مؤسسات آموزش عالی (مطالعه موردی دانشگاه آزاد واحد بویینزهرا). گروه صنایع، دانشگاه آزاد اسلامی، واحد قزوین، دانشکده صنایع و مکانیک.
ایرجی، اعظم.، مینایی، بهروز.، شکورنیاز ونوس. (1392). بهکارگیری فنآوری دادهکاوی بهمنظور آسیبشناسی افت تحصیلی هنرجویان هنرستانی و استخراج نمایهساز توصیفی در ارائه تمایز دانش آموزان ضعیف و ممتاز تهران، دانشکده مهندسی کامپیوتر دانشگاه علم و صنعت ایران.
یقینی مسعود.، اکبری، امین.، شریفی، سید محمدمهدی. (1387). پیشبینی وضعیت تحصیلی دانشجویان با استفاده از تکنیکهای دادهکاوی، دومین کنفرانس دادهکاوی ایران، تهران.
References
Abdelmagid, A., & Qahmash, A. (2023). Utilizing the Educational Data Mining Techniques" Orange Technology" for Detecting Patterns and Predicting Academic Performance of University Students. Inf. Sci. Lett, 12, 1415-1431.
Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of Students' Academic Performance Using Artificial Neural Network. Bulletin of Education and Research, 40(3), 157-164.
Ahmed, N. S., & Sadiq, M. H. (2018). Clarify of the random forest algorithm in an educational field. 2018 international conference on advanced science and engineering (ICOASE),
Ajibade, S.-S. M., Ahmad, N. B., & Shamsuddin, S. M. (2019). An heuristic feature selection algorithm to evaluate academic performance of students. 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC),
Akar, Ö., & Güngör, O. (2012). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2), 105-112.
Al-Emran, M., Malik, S. I., & Al-Kabi, M. N. (2020). A survey of Internet of Things (IoT) in education: Opportunities and challenges. Toward social internet of things (SIoT): enabling technologies, architectures and applications, 197-209.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a Web-Based Prediction System for Students’ Academic Performance. Data, 7(2), 21.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21st century higher education: A review and synthesis. Telematics and Informatics, 37, 13-49.
Alghamdi, A. S., & Rahman, A. (2023). Data mining approach to predict success of secondary school students: A Saudi Arabian case study. Education Sciences, 13(3), 293.
Alsalman, Y. S., Halemah, N. K. A., AlNagi, E. S., & Salameh, W. (2019). Using decision tree and artificial neural network to predict students academic performance. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alshanqiti, A., & Namoun, A. (2020). Predicting student performance and its influential factors using hybrid regression and multi-label classification. IEEE Access, 8, 203827-203844.
Ampadu, Y. B. (2023). Handling Big Data in Education: A Review of Educational Data Mining Techniques for Specific Educational Problems. AI, Computer Science and Robotics Technology.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015). Preprocessing and analyzing educational data set using X-API for improving student's performance. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN,
Arcinas, M. M., Sajja, G. S., Asif, S., Gour, S., Okoronkwo, E., & Naved, M. (2021). Role of Data Mining in Education for Improving Students Performance for Social Change. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 6519-6526.
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics surveys, 4, 40-79.
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.
Bahadir, E. (2016). Using Neural Network and Logistic Regression Analysis to Predict Prospective Mathematics Teachers' Academic Success upon Entering Graduate Education. Educational Sciences: Theory and Practice, 16(3), 943-964.
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33-44.
Banik, P., & Kumar, B. (2019). Impact of information literacy skill on students’ academic performance in Bangladesh. International Journal of European Studies, 3(1), 27-33.
Batirovna, S. B. (2023). EDUCATIONAL DATA MINING AND LEARNING ANALYTICS.
Batool, S., Rashid, J., Nisar, M. W., Kim, J., Kwon, H.-Y., & Hussain, A. (2023). Educational data mining to predict students' academic performance: A survey study. Education and Information Technologies, 28(1), 905-971.
Bernacki, M. L., Chavez, M. M., & Uesbeck, P. M. (2020). Predicting achievement and providing support before STEM majors begin to fail. Computers & Education, 158, 103999.
Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. 2020 International Conference on Information Science and Communication Technology (ICISCT),
Breiman, L. (2001). Random forests Mach Learn 45 (1): 5–32. In.
Capuano, N., & Toti, D. (2019). Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing. Computers in Human Behavior, 92, 459-467.
Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524-529.
Chen, S., & Lin, X. (2023). Application of Decision Tree Algorithm in Educational Data Mining. Curriculum and Teaching Methodology, 6(8), 120-127.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527-1547.
Costa, E., Lorena, A., Carvalho, A., & Freitas, A. (2007). A review of performance evaluation measures for hierarchical classifiers. Evaluation methods for machine learning II: Papers from the AAAI-2007 workshop,
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6), e04081.
Cuevas, R., Ntoumanis, N., Fernandez-Bustos, J. G., & Bartholomew, K. (2018). Does teacher evaluation based on student performance predict motivation, well-being, and ill-being? Journal of school psychology, 68, 154-162.
Dabhade, P., Agarwal, R., Alameen, K., Fathima, A., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings, 47, 5260-5267.
Debang, M., & Hassan, B. U. (2023). Educational Data Mining: Prospects and Applications.
Ding, W., Jing, X., Yan, Z., & Yang, L. T. (2019). A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion. Information Fusion, 51, 129-144.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., Dakkak, A., & El Allioui, Y. (2019). A multiple linear regression-based approach to predict student performance. International Conference on Advanced Intelligent Systems for Sustainable Development,
Fernandes, E., Carvalho, R., Holanda, M., & Van Erven, G. (2017). Educational data mining: Discovery standards of academic performance by students in public high schools in the federal district of brazil. World conference on information systems and technologies,
Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A longitudinal multilevel model analysis of the within-person and between-person effect of effortful engagement and academic self-efficacy on academic performance. Journal of School Psychology, 52(3), 295-308.
Garcia, J. D., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: evidence for Colombia using classification trees. Psychology, Society & Education, 11(3), 299-311.
Han, J., & Kamber, M. (2006). Data mining: concepts and techniques, 2nd. University of Illinois at Urbana Champaign: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques third edition. The Morgan Kaufmann Series in Data Management Systems, 5(4), 83-124.
Harwati, A. (2014). AP, & Wulandari, FA (2014). Mapping student’s performance based on data mining approach. The 2014 International Conference on Agro-industry (ICoA): Competitive and Sustainable Agroindustry for Human Welfare,
Hasani, A. A., & Bazrafshan, M. (2018). Analyzing Students’ Educational Information to Evaluate Their Success via Using Data Mining Method (Case Study: Faculty of Management and Industrial Engineering, Shahrood University of Technology). Journal of Management and Planning In Educational System, 11(2), 187-208.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. N. (2018). Predicting academic performance: a systematic literature review Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus. https://doi.org/10.1145/3293881.3295783
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11. https://doi.org/https://doi.org/10.1016/j.dss.2017.05.003
Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N. (2018). Educational data mining and analysis of students’ academic performance using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447-459.
Jayaprakash, S., Krishnan, S., & Jaiganesh, V. (2020). Predicting students academic performance using an improved random forest classifier. 2020 international conference on emerging smart computing and informatics (ESCI),
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
Kabakchieva, D. (2013). Predicting student performance by using data mining methods for classification. Cybernetics and information technologies, 13(1), 61-72.
Karo, I., Fajari, M., Fadhilah, N., & Wardani, W. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering,
Kaur, K., & Dahiya, O. (2023). Role of Educational Data Mining and Learning Analytics Techniques Used for Predictive Modeling. 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM),
Khasanah, A. U. (2017). A comparative study to predict student’s performance using educational data mining techniques. IOP Conference Series: Materials Science and Engineering,
Kulkarni, V. Y. (2014). Effective learning and classification using random forest algorithm.
Kumar, A. D., Selvam, R. P., & Kumar, K. S. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics, 118(8), 531-537.
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student’s performance in academics. Int. J. of Engineering and Advanced Technology, 8(3), 54-61.
Lei, C., & Li, K. F. (2015). Academic performance predictors. 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops,
Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, 123-156.
Lever, J., Krzywinski, M., & Altman, N. (2016). Points of significance: model selection and overfitting. Nature methods, 13(9), 703-705.
Machado, M. R., Karray, S., & de Sousa, I. T. (2019). LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. 2019 14th International Conference on Computer Science & Education (ICCSE),
Manoharan, R., Stalin, M. S., & Loganathan, G. B. (2023). Ensemble Model for Educational Data Mining Based on Synthetic Minority Oversampling Technique.
Marjan, M. A., Uddin, M. P., & Ibn Afjal, M. (2023). An Educational Data Mining System For Predicting And Enhancing Tertiary Students’ Programming Skill. The Computer Journal, 66 (5),1101-1083.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and Predicting Students' Academic Performance Using Data Mining Techniques. International journal of modern education & computer science, 8(11).
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875-894.
Mwadulo, M. W. (2016). A review on feature selection methods for classification tasks.
Nghe, N. T., Janecek, P., & Haddawy, P. (2007). A comparative analysis of techniques for predicting academic performance. 2007 37th annual frontiers in education conference-global engineering: knowledge without borders, opportunities without passports,
Nijhawan, V. K., Madan, M., & Dave, M. (2017). The Analytical Comparison of ID3 and C4. 5 using WEKA. International Journal of Computer Applications, 167(11), 1-4.
Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications. Academic press.
Ogunde, A. O., & Ajibade, D. A. (2014). A data mining system for predicting university students’ graduation grades using ID3 decision tree algorithm. Journal of Computer Science and Information Technology, 2(1), 21-46.
Oreski, D., Pihir, I., & Konecki, M. (2017). Crisp-DM process model in educational setting. Economic and Social Development: Book of Proceedings, 19-28.
Oskouei, R. J., & Askari, M. (2014). Predicting academic performance with applying data mining techniques (generalizing the results of two different case studies). Computer Engineering and Applications Journal, 3(2), 79-88.
Osmanbegović, E., Suljić, M., & Agić, H. (2014). Determining dominant factor for students performance prediction by using data mining classification algorithms. Tranzicija, 16(34), 147-158.
Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using classification. arXiv preprint arXiv:1104.4163.
Phan, H. P., & Ngu, B. H. (2014). An empirical analysis of students’ learning and achievements: A motivational approach. Education Journal, 3(4), 203-216.
Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of current engineering and technology, 3(2), 334-337.
Punlumjeak, W., & Rachburee, N. (2015, 29-30 Oct. 2015). A comparative study of feature selection techniques for classify student performance. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE),
Putpuek, N., Rojanaprasert, N., Atchariyachanvanich, K., & Thamrongthanyawong, T. (2018). Comparative study of prediction models for final GPA score: a case study of Rajabhat Rajanagarindra University. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Rahman, L., Setiawan, N. A., & Permanasari, A. E. (2017). Feature selection methods in improving accuracy of classifying students' academic performance. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),
Ramaswami, M., & Bhaskaran, R. (2010). A CHAID based performance prediction model in educational data mining. arXiv preprint arXiv:1002.1144.
Raosoft. (2004). Raosoft, 2004. Sample Size Calculator. Available at: http://www.raosoft.com/samplesize.html.
Rebai, S., Yahia, F. B., & Essid, H. (2020). A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socio-Economic Planning Sciences, 70, 100724.
Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey [https://doi.org/10.1002/widm.1355]. WIREs Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/https://doi.org/10.1002/widm.1355
Ross Quinlan, J. (1993). C4. 5: programs for machine learning. Mach. Learn, 16(3), 235-240.
Rostami, M., Ayat, S., Saghari, F., & Yaghoobi, F. (2015). Applying fuzzy clustering to assess and anticipate students' educational progress in learning environments. Technology of education, 10(1), 23-36.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia. In: Pearson Education Limited London, UK:.
Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5), 212-220.
Salal, Y., & Abdullaev, S. (2019). Optimization of classifiers ensemble Construction: Case study of Educational data Mining. Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника, 19(4).
Sasikala, S., alias Balamurugan, S. A., & Geetha, S. (2016). Multi Filtration Feature Selection (MFFS) to improve discriminatory ability in clinical data set. Applied Computing and Informatics, 12(2), 117-127.
Seif, A. (2016). Modern educational psychology: Psychology of learning and education. Tehran: Doran Publishing. [In Persian].
Shaikh, A., Mahoto, N., Khuhawar, F., & Memon, M. (2015). Performance evaluation of classification methods for heart disease dataset. Sindh University Research Journal-SURJ (Science Series), 47(3).
Simundic, A.-M. (2008). Confidence interval. Biochemia Medica, 18(2), 154-161.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Sokkhey, P., & Okazaki, T. (2020). Hybrid machine learning algorithms for predicting academic performance. Int. J. Adv. Comput. Sci. Appl, 11(1), 32-41.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Surjeet, K., & Saurabh, P. (2012). Data Mining: A Prediction for Performance Improvement of Engineering Students using Classification” WCSIT. In: ISSN.
Tan, P., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining: Pearson New International Edition (English Edition). In: Pearson Education Limited, Harlow, ESX, UK.
Ting, K. M. (2017). Confusion matrix. Encyclopedia of machine learning and data mining, 260.
Turabieh, H. (2019, 9-11 Oct. 2019). Hybrid Machine Learning Classifiers to Predict Student Performance. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS),
Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2017). On predicting academic performance with process mining in learning analytics. Journal of Research in Innovative Teaching & Learning, 10(2), 160-176. https://doi.org/10.1108/JRIT-09-2017-0022
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110.
Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human behavior, 104, 106189.
Widyastuti, T., Kurniawan, A., & Chandra, N. P. (2017). Coping Strategies on Students After Experiencing Academic Failure: An Indigenous Study in Javanese Context. Work Pap Ser, 3, 22-26.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Wood, J. M. (2007). Understanding and computing Cohen’s Kappa: A tutorial. WebPsychEmpiricist. Retrieved October, 3(2007), 145-160.
Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Computers in Human Behavior, 98, 166-173.
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student's performance. arXiv preprint arXiv:1202.4815.
Yağcı, M. (2022). Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-19.
Yehuala, M. A. (2015). Application of data mining techniques for student success and failure prediction (The case of Debre Markos university). International journal of scientific & technology research, 4(4), 91-94.
Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5: Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4. 5. Jurnal Mantik, 4(1), 441-451.
Zimmermann, J., Brodersen, K. H., Heinimann, H. R., & Buhmann, J. M. (2015). A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance. Journal of Educational Data Mining, 7(3), 151-176.
Zulfiker, M. S., Kabir, N., Biswas, A., Chakraborty, P., & Rahman, M. M. (2020). Predicting students’ performance of the private universities of Bangladesh using machine learning approaches. International Journal of Advanced Computer Science and Applications, 11(3), 672-679.
References [In Persian]
Masoud's certainty; Akbari, Amin; Sharifi, Seyyed Mohammad Mahdi (2007). Predicting the educational status of students using data mining techniques, the second data mining conference of Iran, Tehran.
Najafi Mahmoud; Afzali, Mehdi; Moradi, Mahmoud (2021). The use of educational data mining to identify the factors affecting the academic drop of students. Quarterly journal of intelligent multimedia processing and communication systems.
Soltani, Star; Javadani Gadmani, Taghi (2021). Analytical comparison of performance of data mining algorithms in predicting academic progress of students. The second national conference on the latest achievements in data engineering, knowledge and soft computing.
Ghodoosi, Mir Saeedi, kosha. Predicting and analyzing student performance using data mining techniques to improve academic performance. Department of Industrial Engineering, Ferdowsi University of Mashhad.
Fadavi Rudsari Azadeh, Salehi Keyvan, Khodayi Ebrahim, Moghadamzadeh Ali, Javadipour Mohammad (2018). Bayesian network model of factors related to academic failure of Tehran University students, Journal of Psychological Sciences; 18(76): 429-417.
Khosravi, Hadi; Shafii, Reyhane. (2016). Predicting student performance using data mining, Faculty of Computer Engineering.
- Zahedi Fard, A. Attarzadeh, and H. Pazakhzadeh (2014). Prediction of high school students' performance with data mining techniques.
Shamlu, Rasul; Hope, Manouchehr; Amin Far, Faeze (2014). Investigating the prediction of students' educational behavior with a data mining approach in higher education institutions (case study of Azad University, Boyin Zahra Branch). Department of Industries, Islamic Azad University, Qazvin Branch, Faculty of Industries and Mechanics.
Asadi Vermele, Parviz; Ahmadi, Hadi; Hosni Pirmohammadi, Heshmatullah. (2013). Investigating the causes of academic failure of first year high school students using data mining techniques", Second International Conference on New Achievements in Engineering and Basic Sciences, Ardabil.