نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری رشته مدیریت فناوری اطلاعات، دانشگاه علامه طباطبائی، تهران، ایران نویسنده مسئول: AbbasBagherian@yahoo.com
2 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی ، تهران، ایران
3 استاد گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی ، تهران، ایران
4 دانشیار گروه حسابداری، دانشگاه گوله، گوله، سوئد.
چکیده
بیشتر سیستمهای تشخیص تقلب سنتی برای شناسایی تقلب مالی، صرفا معیارهای مالی را در نظر میگیرند که به نظر میرسد درحالیکه این احتمال وجود دارد که شرکتهای متقلب علاوه بر تقلبهای مالی، مرتکب سایر انواع تقلبهای غیر مالی نیز شوند. اگرچه تحقیقات اخیر، بیش از حد بر اهمیت داده های مالی به عنوان تنها فاکتور پیشبینیکننده تقلب تأکید کردهاند؛ هیچ مطالعهای بر معیارهای غیر مالی یا ESG به عنوان یک فاکتور کمکی برای برای پیشبینی تقلب انجام نشده است. لذا هدف این تحقیق این است که با ارائه یک مدل یادگیری ماشینی پیشرفته و یادگیری عمیق، امکان بهبود پیشبینی تقلبهای بر اساس ترکیبی از دادههای مالی و ESG، را بررسی نماید. در این پژوهش با استفاده از الگوریتم های نظارتشده یادگیری ماشین و یادگیری عمیق، به بررسی چگونگی شناسایی تقلب مالی در بازه زمانی 10 ساله منتهی به سال 1401 پرداخته می شود. این تحقیق به طور نوآورانهای نشان داد که استفاده از مدل ترکیبی مبتنی بر دادههای مالی ومعیارهای غیرمالی قدرت پیشبینیکنندهای بهتری برای تقلبهای مالی نسبت به تکیه صرف بر دادههای مالی دارد. مطابق یافته های این تحقیق، در پاسخ به پرسش اول این تحقیق، در میان الگوریتمهای یادگیری ماشین و یادگیری عمیق، بالاترین کارایی در برای الگوریتم طبقهبندی یا Bagging مشاهده گردید. همچنین یافته های این تحقیق در خصوص سوال دوم تحقیق نشان می دهد که مجموعه دادهای همه ویژگیها(مدل ترکیب دادههای مالی و غیرمالی) کارایی بهتری در مقایسه با مجموعه دادههای مالی به تنهایی) و غیرمالی به تنهایی داشته است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Detecting financial fraud in public companies using financial and non-financial metrics with a machine learning approach
نویسندگان [English]
- Abbas Bagherian Kasgari 1
- Iman Raeesi Vanani 2
- Maghsoud Amiri 3
- Saeid Homayoun 4
1 Ph.D Candidate of Information Technology Management,, Allameh Tabataba’i University, Tehran, IranCorresponding Author: AbbasBagherian@yahoo.com
2 Associate Professor, Allameh Tabataba'i University, Tehran, Iran
3 Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Allameh Tabataba’i University Tehran, Iran
4 Associate Professor, University of Gävle, Gävle, Sweden
چکیده [English]
Most traditional fraud detection systems primarily focus on financial criteria to identify financial fraud, often overlooking the potential for fraudulent companies to engage in various types of non-financial misconduct. Recent studies have predominantly highlighted the significance of financial data as the sole indicator of fraud, neglecting the exploration of non-financial or Environmental, Social, and Governance (ESG) metrics as supplementary predictors. This research aims to enhance fraud prediction by integrating financial and ESG data through sophisticated machine learning and deep learning models. It examines the effectiveness of supervised machine learning and deep learning algorithms in detecting financial fraud over a 10-year period ending in 1401. This study innovatively demonstrates that a hybrid model, which combines financial and non-financial criteria, yields superior predictive accuracy for financial fraud than models based solely on financial data. The results of this study, addressing the first research question, indicate that among various machine learning and deep learning algorithms, the classification or bagging algorithm demonstrated superior efficiency. Furthermore, in response to the second research question, it was found that the dataset encompassing all features—integrating both financial and non-financial data—outperformed those datasets limited to either financial or non-financial data alone. The research results indicated that the bagging machine learning algorithms act the best with combined feature set including financial and ESG metrics combined. The adoption of the proposed model significantly improves the accuracy and effectiveness of fraud detection systems.
Introduction
In an era marked by rapid advancements in data analytics and increasing corporate accountability, the detection of financial fraud has become a priority for stakeholders across the global business landscape. Traditional fraud detection systems have primarily focused on analyzing financial data, often at the expense of overlooking non-financial metrics that may equally signal fraudulent activities. This oversight is significant considering the growing evidence suggesting that non-financial indicators, particularly Environmental, Social, and Governance (ESG) metrics, can provide critical insights into the operational integrity of organizations.
Literature Review
Recent scholarly works and industry reports have highlighted a significant shift towards integrating ESG metrics with financial data to enhance the predictive accuracy of fraud detection systems. This integration reflects an expanded understanding of what constitutes corporate transparency and accountability, extending beyond mere financial disclosures to include broader sustainability and governance factors. Indeed, the integration of these diverse data sources promises a more holistic approach to fraud detection, aligning with contemporary demands for corporate responsibility and ethical business practices. The research presented in this paper builds on this foundation by employing advanced machine learning (ML) and deep learning (DL) algorithms to analyze a combination of financial and non-financial metrics. The study's innovative approach leverages a decade's worth of data from over 6000 public companies, utilizing a variety of ML and DL models to explore the efficacy of integrated datasets in predicting fraudulent activities more effectively than traditional methods. The findings aim to contribute not only to academic discourse but also to practical applications in corporate governance, offering valuable insights for regulators, investors, and policymakers committed to upholding the highest standards of corporate ethics and governance. By synthesizing complex data sets and applying sophisticated analytical techniques, this research underscores the potential of ML and DL models to revolutionize fraud detection, setting a new standard for both the scope and depth of fraud analysis.
Objective
The primary goal of this research is to improve financial fraud detection in public enterprises by integrating Environmental, Social, and Governance (ESG) metrics with traditional financial data, using machine learning (ML) and deep learning (DL) techniques. This approach addresses the limitations of traditional systems that focus mainly on financial indicators, often missing non-financial signs of fraud. This study rigorously tests various ML and DL models trained on ESG-enriched datasets against those using only financial data, exploring whether a holistic approach can enhance fraud predictiveness. The research aims to offer a broader view of company operations, in line with sustainable practices, potentially shifting how data science is applied in fraud detection. Ultimately, this study seeks to enrich discussions on integrating financial and non-financial data in fraud detection, influencing future corporate risk and governance strategies, and improving fraud prediction accuracy in line with emerging standards of corporate accountability and transparency.
Method
This study employs a sophisticated analytical approach using machine learning (ML) and deep learning (DL) to enhance financial fraud detection, leveraging a robust dataset that includes both traditional financial indicators and Environmental, Social, and Governance (ESG) metrics from over 6000 public companies worldwide. These metrics, sourced from reputable databases such as Thomson Reuters ASSET4, are crucial for advanced analyses. The methodology involves thorough data preprocessing, including handling missing values, normalizing data, and encoding categorical variables, with a focus on balancing the dataset using oversampling techniques to counter class imbalance and improve model generalization for detecting rare fraudulent cases.
The research rigorously evaluates various ML and DL models like Decision Trees, Naive Bayes, SVM, CNN, LSTM, and ensemble methods such as Bagging, Extra Trees, and Random Forests. The models are trained and tested on divided datasets to assess their effectiveness using metrics like accuracy, precision, recall, F1-score, and the Matthews Correlation Coefficient (MCC), with extensive validation techniques including cross-validation to ensure stability and prevent overfitting. The models' performance is compared with baseline models that use only financial data, highlighting the benefits of integrating ESG metrics for deeper insights and enhanced predictiveness in fraud detection.
Results
This study evaluates the integration of Environmental, Social, and Governance (ESG) metrics with traditional financial data in detecting financial fraud using various machine learning (ML) and deep learning (DL) algorithms. Results highlight the enhanced performance of fraud detection models when using combinations of financial and ESG metrics. Notably, the Extra Tree classifier and bagging algorithms excelled, particularly when analyzing balanced datasets that included both types of metrics. The use of oversampling techniques proved crucial in improving detection rates for rare fraudulent cases, thus balancing the dataset and reducing bias.
Models integrating both financial and ESG data consistently outperformed those using only one data type, enhancing accuracy, precision, recall, and F1 score. This underscores the value of a multidimensional approach in fraud detection. Advanced metrics like the Matthews Correlation Coefficient (MCC) and the Area Under the ROC Curve (AUC) provided a nuanced assessment of model performance, with higher MCC and AUC values indicating greater effectiveness in identifying fraudulent activities. The integration of ESG metrics was particularly effective in identifying potential fraud in companies that might appear financially sound but engage in unethical practices.
The findings recommend that companies, regulatory bodies, and technology developers adopt integrated approaches that encompass both financial and ESG data to improve fraud detection. Future research could focus on real-time data integration and more complex models like hybrid deep learning frameworks to further boost detection capabilities. The study demonstrates that using ESG metrics alongside financial data with advanced ML techniques significantly improves the accuracy and reliability of fraud detection systems, aligning with sustainable business practices and setting the stage for future innovations in fraud detection. This comprehensive approach not only yields superior performance but also enhances the model's capabilities, emphasizing the effectiveness of combining financial and non-financial data.
Conclusion
This research significantly advances the use of machine learning (ML) and deep learning (DL) in detecting financial fraud, highlighting the integration of Environmental, Social, and Governance (ESG) metrics with traditional financial data to enrich datasets and enhance model predictive power. Models trained on datasets combining financial and ESG metrics show superior performance in accuracy, precision, recall, and F1 score, improving anomaly detection and fraud prediction. The use of oversampling techniques addresses class imbalance issues, enhancing sensitivity to rare fraudulent cases and boosting the performance of ensemble methods like the Extra Tree classifier.
The findings highlight the critical role of ESG metrics in enhancing corporate governance and risk management, providing deeper insights into non-financial behaviors that indicate potential risks, which supports more informed decision-making and boosts transparency. Future research should investigate real-time fraud detection systems and the use of unsupervised and semi-supervised models to adapt to evolving fraud tactics. Practitioners are encouraged to adopt advanced machine learning (ML) and deep learning (DL) techniques, incorporating ESG metrics to improve fraud detection systems' accuracy and reliability, aligning with sustainable business practices and setting new standards in fraud detection technology.
Keywords: Fraud Detection Intelligent Systems, Deep Learning, Machine Learning, Financial Metrics, Non-Financial Metrics (ESG).
کلیدواژهها [English]
- Financial Fraud Detection
- Deep Learning
- Machine Learning
- Financial Metrics
- ESG Metrics
- استراوس، انسلم؛ کربین، جولیت. (1394). مبانی پژوهش کیفی: فنون و مراحل تولید نظریه زمینهای. ابراهیم افشار، تهران: نشر نی.
- باقریان، عباس. (1385). بورس الکترونیک؛ استانداردها و سیستمهای هوشمند نظارتی. در اولین همایش سراسری بورس الکترونیک (ص. 1-10). قزوین: دانشگاه آزاد اسلامی واحد قزوین. https://www.civilica.com/Paper-SEB01-SEB01_001.html
- بولو، قاسم، برزیده، فرخ، الهیاری ابهری، حمید. (1399). الگویی برای ارزیابی خطر تقلب در حسابرسی صورتهای مالی. مجله دانش حسابداری، 11(4)، 25-45. doi:10.22103/jak.2020.15880.3254.
- بهرامی، آسو، نوروش، ایرج، راد، عباس و محمد ملقرنی، عطااله. (1400). تقلب در صورتهای مالی و تکنیکهای نوین مورداستفاده جهت کشف آن. مطالعات حسابداری و حسابرسی، 10(38)، 105-118. doi:10.22034/iaas.2021.134547.
- ثقفی، دکتر علی و بهار مقدم، دکتر مهدی. (1387). محرکهای مؤثر بر مدیریت سود. توسعه و سرمایه، 1(2)، 103-125. doi:10.22103/jdc.2008.1894.
- جلال جمالی، علی اصغر متقی و احمد محمدی. (1400). مطالعه مقایسهای الگوهای پیشبینی ورشکستگی و ارائه الگوی بهینه برای محیط اقتصادی ایران. توسعه و سرمایه، 6(2)، 111-134. doi:10.22103/jdc.2022.18728.1187.
- جهانگیر یاری. (1387). بررسی موانع ایجاد سازمان یادگیرنده در مرکز آموزش ایران خودرو. سال اول، شماره 4، زمستان.
- حسن حکمی. (1392). رویکرد شناختی؛ تاریخچه، بینایی و توجه، علوم شناختی و هوش ماشین.
- دانیل رایف، استفن لیسی و فریدریک جی. فیکو. (1385). چاپ دوم، تحلیل پیامهای رسانهای (کاربرد تحلیل محتوای کمی در تحقیق). ترجمه مهدخت بروجردی علوی، تهران: سروش.
- رضائیان، علی. (1377). تجزیه و تحلیل و طراحی سیستم. تهران: سمت.
- رئیسی وانانی، ایمان، باقریان کاسگری، عباس، امیری، مقصود و همایون، سعید. (1402). تحلیل محتوای دو دهه پژوهشهای سیستمهای هوشمند نظارتی برای شناسایی تقلب مالی. توسعه و سرمایه. doi:10.22103/jdc.2023.22263.1426.
- سرمد، زهره، بازرگان، عباس و حجازی، الهه. (1390). روشهای تحقیق در علوم رفتاری. تهران: نشر آگه.
- سنگه، پیتر. (1377). پنجمین فرمان. ترجمه حافظ کمال هدایت و محمد روشن. تهران: نشر سازمان مدیریت صنعتی.
- سیاوش شایان، سید فاطمه نوربخش و همکاران. (1395). تئوری پیچیدگی و رویکرد کلاژیسم در سیستمهای ژئومورفیک. مطالعات جغرافیایی مناطق خشک، 6(20)، بهار.
- شکوهی فرد، سیامک، ابوالحسنی، اصغر و فرهنگ، امیرعلی. (1400). اثرات فساد بر شکنندگی مالی در ایران: رهیافت رگرسیون کوانتایل. توسعه و سرمایه، 6(2)، 93-110. doi:10.22103/jdc.2021.18460.1169.
- فاضلی، ن.ا. (1376). آموزش، تحقیق و ترویج (تحلیل محتوای نامه علوم اجتماعی). نمایه پژوهش، 1(1)، 1-16.
- قائدی، محمدرضا و همکاران. (1395). روش تحلیل محتوا: از کمیگرایی تا کیفیگرایی. فصلنامه علمی-پژوهشی «روشها و مدلهای روانشناختی»، 7(23)، 57-82.
- قربانیان، امیر، عبدلی، محمدرضا، ولیان، حسن و بودلائی، حسن. (1402). ارزیابی کارکردهای حسابرسی داخلی شهروندِ شرکتی. توسعه و سرمایه، 8(1)، 143-165. doi:10.22103/jdc.2022.19858.1273.
- قیومی، مهدی. (2022). یادگیری عمیق در عمل. دانشگاه کرنل. ISBN 9780367458621.
- کاظمی، توحید. (1395). انتخاب سبد سهام بهینه از بین سهام شرکتهای پذیرفته شده در بورس اوراق بهادار تهران با استفاده از الگوریتم مورچگان. پایاننامه کارشناسی ارشد، رشته حسابداری، دانشگاه آزاد اسلامی واحد تهران مرکز.
- کردستانی، دکتر غلامرضا و آشتاب، علی. (1388). پیشبینی مدیریت سود بر مبنای تعدیل سود هر سهم. توسعه و سرمایه، 2(2)، 141-158. doi:10.22103/jdc.2009.1912.
- کمیته تدوین استانداردهای حسابداری. (d.). استانداردهای حسابداری. سازمان حسابرسی.
- کودره، دیوید. (1391). پیشگیری و کشف تقلب به کمک رایانه. ترجمه امیر پوریانسب و آیدا پوریا نسب. تهران: انتشارات هوشیار ممیز.
- گل ایری، تحفه، کرد، صفوره و خاری، رضا. (1399). مسئولیت حسابرس و کشف تقلب. شباک، 6(6)، 135-142. SID. https://sid.ir/paper/525408/fa.
- گلدمن، پیتر و کافمن، هیلتون. (1395). راهنمای کاربردی ریسکهای تقلب و کنترلهای ضد تقلب. ترجمه امیر پوریانسب و محسن قاسمی. تهران: انتشارات حساب افزار ایرانیان.
- مدرس، دکتر احمد و افلاطونی، عباس. (1388). مدیریت سود در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران. توسعه و سرمایه، 2(2)، 51-72. doi:10.22103/jdc.2009.190.
- محمدرضا قدوسی و همکاران. (1398). ارائه چارچوب حکمرانی دانش در شبکههای اجتماعی. دو فصلنامه علمی مدیریت اطلاعات، 5(1).
- مشایخی، بیتا و همکاران. (1392). تدوین مدل کیفیت حسابرسی. فصلنامه بورس و اوراق بهادار، 6(23)، 103-137.
- منصور صادقی ما لامیری. (1393). رفتارهای سهگانه بخل، میانهروی و اسراف از دیدگاه سیستمی. دو فصلنامه علمی پژوهشی مدیریت اسلامی، 22(1)، 141-166.
- میریعقوب سیدرضایی. (1395). تنوعبخشی و پیچیدهسازی سیستم اداری به منزله الگویی برای اداره بهینه پایتخت. فصلنامه تحقیقات جغرافیایی، 31(4)، زمستان.
- مؤمنی راد، اکبر؛ علی آبادی، خدیجه؛ فردانش، هاشم؛ و مزینی، ناصر. (1392). تحلیل محتوای کیفی در آیین پژوهش: ماهیت، مراحل و اعتبار نتایج. اندازهگیری تربیتی، 4(14).
- مهرانی، دکتر ساسان، گنجی، حمیدرضا، تحریری، آرش و عسکری، محمدرضا. (1388). ارزیابی رتبهبندی شرکتها بر اساس اطلاعات حسابداری و غیرحسابداری و مقایسه آن با رتبهبندی شرکتها در بورس اوراق بهادار تهران. توسعه و سرمایه، 2(1)، 7-32. doi:10.22103/jdc.2009.1899.
- نمازی، دکتر محمد و ناظمی، امین. (1387). مروری بر پژوهشهای حسابداری انجام شده در بورس اوراق بهادار تهران. توسعه و سرمایه، 1(2)، 9-48. doi:10.22103/jdc.2008.1891.
- نویدی عباس پور، ابراهیم و واعظی، جمیله. (1401). عوامل تعیینکننده توانایی حسابرسی برای کشف تقلب: عوامل داخلی و خارجی. مطالعه موردی: حسابرسان مؤسسات حسابرسی عضو جامعه حسابداران رسمی ایران. دوازدهمین کنفرانس بینالمللی پژوهشهای نوین در مدیریت، اقتصاد، حسابداری و بانکداری. https://civilica.com/doc/1566301.
- هولستی، آل. آر. (1373). تحلیل محتوا در علوم اجتماعی و انسانی. ترجمه نادر سالارزاده امیری. تهران: انتشارات دانشگاه علامه طباطبایی (تاریخ ترجمه اثر به زبان اصلی 1969).
References
- (2018). The extents of neuroscience and neuropsychology in the study of artificial intelligence. IRA-International Journal of Applied Sciences, 13(3).
- Á. Alonso, et al. (2019). An identity framework for providing access to FIWARE OAuth 2.0-based services according to the eIDAS European Regulation. IEEE Access, 7, 88435-88449. https://doi.org/10.1109/ACCESS.2019.2926556
- Ozbayoglu, M. U. Gudelek, & O. B. Sezer. (2020). Deep learning for financial applications: A survey. Applied Soft Computing Journal.
- Abakarim, Y., Lahby, M., & Attioui, A. (2018, October). An efficient real-time model for credit card fraud detection based on deep learning. In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications (pp. 1-7).
- Abdulghani, A. Q., et al. (2021). Credit card fraud detection system using machine learning algorithms and fuzzy membership.
- Abhimanyu Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, & P. Beling. (2018). Deep learning detecting fraud in credit card transactions. In 2018 Systems and Information Engineering Design Symposium (SIEDS). IEEE.
- Abhishek Nair, D. Reckien, & M. F. A. M. van Maarseveen. (2019). A generalised fuzzy cognitive mapping approach for modelling complex systems. Applied Soft Computing, 84, 105754. https://doi.org/10.1016/j.asoc.2019.105754
- Accounting Standards Drafting Committee. (2018). Accounting standards. Auditing Organization [In Persian].
- Ahmadpour Kasgari, A., Bagherian Kasgari, R., & Bagherian Kasgari, A. (2009). The feasibility of eXtensible Business Reporting Language for listed companies on Tehran Stock Exchange. Quarterly Journal of Securities Exchange, 2(6).
- Ahmed, A. N. S., & Ravinder. (2023). A survey on detection of fraudulent credit card transactions using machine learning algorithms. 3rd International Conference on Intelligent Communication and Computational Techniques, ICCT 2023. Jaipur.
- Aihua Li, J. W., & Zhidong Liu. (2017). Market manipulation detection based on classification methods. Elsevier Procedia Computer Science, 122, 788-795.
- Alan Hevner, S. C. (2010). Design research in information systems: Theory and practice. Springer Science & Business Media.
- Allan Inocencio de Souza Costa & Luis Silva. (2016). Sequence classification of the limit order book using recurrent neural networks.
- Amr Kayid. (2020). The role of artificial intelligence in future technology. Artificial General Intelligence. https://doi.org/10.13140/RG.2.2.12799.23201
- Anuj Sharma & Prabin Kumar Panigrahi. (2012). A review of financial accounting fraud detection based on data mining techniques. International Journal of Computer Applications, 39(1), 37–47.
- Argyris, C., & Schön, D. A. (1978). Organizational learning: A theory of action perspective. Massachusetts: Addison-Wesley Publishing Company.
- Arwin Datumaya Wahyudi Sumari & Adang Suwandi Ahmad. (2018). Intelligent system, cognitive artificial intelligence: Concept and applications for humankind. Kasetsart University, IEEE. ISBN: 978-1-78923-607-1.
- Ashtiani, M. N., & Raahemi, B. (2022). Intelligent fraud detection in financial statements using machine learning and data mining: A systematic literature review. IEEE Access, 10, 72504-72525.
- Aslam, F., Hunjra, A. I., Ftiti, Z., Louhichi, W., & Shams, T. (2022). Insurance fraud detection: Evidence from artificial intelligence and machine learning. Research in International Business and Finance, 62. https://doi.org/10.1016/j.ribaf.2022.101744
- Athanasios Drigas & Maria Karyotaki. (2019). Attention and its role: Theories and models. International Journal of Emerging Technologies in Learning (iJET), June.
- Bagherian Kasgari, A. (2007). Electronic stock exchange, standards and intelligent surveillance networks. Bourse Journal, Securities and Exchange Organization of Iran Monthly Journal, 1(61), 40-61.
- Bagherian Kasgari, A. (2009). Company performance analysis using XBRL, intelligent visual fraud, and XBRL surveillance and analysis desktop. Prize Winners of Ninth Global XBRL Academic Competition 2008-2009 Results, Bryant University, USA.
- Bagherian Kasgari, A. (2009). Intelligent visual fraud: Supporting fraud detection efforts of exchange regulators using visual modeling. 1st International Conference on Digital Forensics and Cyber Crime.
- Bagherian Kasgari, A. (2010). Discussant speech on the paper “Enhancing the regulation of Chinese securities companies, an analysis of the function of information disclosure.” 8th International Workshop for Young Scholars (WISH), organized by European Law Journal and ESSCA, Angers, Loire Valley, France.
- Bagherian Kasgari, A. (2012). The next generation of financial mobile networks. The 24th XBRL International Conference.
- Bagherian Kasgari, A. (2013). XBRL decision cloud. US XBRL Challenge.
- Bagherian Kasgari, A., & Sheykhi, K. (2014). Stock price fluctuations and corporate forecasts disclosure: Evidence from an emerging market. International Journal of Management & Information Technology, 9(1), 1481-1495.
- Bagherian Kasgari, A. (2014). The relationship between independent auditors and receiving financial facilities. International Journal of Management Science, 1(4), 58-64.
- Kasgari, A. B. (2016). A new prototype for intelligent visual fraud detection in agent-based auditing framework. International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), 4(2), 070-076.
- Bagherian Kasgari, A. (2016). Is it possible to proactively detect frauds with zero cost? Journal of Engineering and Innovative Technology (IJEIT), 5(7).
- Bagherian Kasgari, A. (2018). Anti-money laundering compliance recommendation and risk level assessment. Anti-Money Laundering Journal of Securities and Exchange Organization, 2(1), 1-33.
- Bagherian Kasgari, A., Mousavi, H., & Homayoun, S. (2020). Extensible visual business intelligence for analyzing XBRL big data on blockchain. In Eurofiling Online Conferences 2020 TECTONIC SHIFT, Eurofiling Innovation Day.
- Bagherian Kasgari, A., Golchin Kharazi, S., & M. T. T. (2019). Price manipulation fraud detection by intelligent visual fraud surveillance system. IEEE, 1646-1651.
- Bagherian Kasgari, A. (2007). Intelligent pyramid continues auditing agent framework for softening SOX burden on small business. X International Congress on Innovations in Teaching Accounting and Business Research (IAAER).
- Bagherian Kasgari, A. (2007). Software services in OTC markets. Bourse Journal, Securities and Exchange Organization of Iran Monthly Journal.
- Bagherian Kasgari, A., Ranjbarzadeh, R., Caputo, A., Baseri Saadi, S., & Bendechache, M. (2023). Brain tumor segmentation based on Zernike moments, enhanced ant lion optimization, and convolutional neural network in MRI images. In Metaheuristics and Optimization in Computer and Electrical Engineering: Volume 2: Hybrid and Improved Algorithms (pp. 345-366). Cham: Springer International Publishing.
- Bahrami, A., Norush, I., Rad, A., & Mohammad Mulqarni, A. (2021). Fraud in financial statements and new techniques used to detect it. Accounting and Auditing Studies, 10(38), 105-118. doi:10.22034/iaas.2021.134547 [In Persian].
- Bakhshi, K., et al. (2021). Fraud detection system in online ride-hailing services.
- Barbara Kitchenham, S. C. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, EBSE Technical Report EBSE-2007-01, 1-57.
- Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55(5), 24-36.
- Beneish, M. D., & Vorst, P. (2020). The cost of fraud prediction errors. Kelley School of Business Research Paper No. 2020-55. Available at SSRN: https://ssrn.com/abstract=3529662 or http://dx.doi.org/10.2139/ssrn.3529662
- Bockel-Rickermann, C., Verdonck, T., & Verbeke, W. (2023). Fraud analytics: A decade of research: Organizing challenges and solutions in the field. Expert Systems with Applications, 232, 120605. https://doi.org/10.1016/j.eswa.2023.120605
- Boluo, G., Barzideh, F., & Alahyari Abhari, H. (2019). A model for assessing the risk of fraud in the audit of financial statements. Journal of Accounting Knowledge, 11(4), 25-45. doi:10.22103/jak.2020.15880.3254 [In Persian].
- Brown, T., Majors, T. M., & Peecher, M. E. (2020). Evidence on how different interventions affect juror assessment of auditor legal culpability and responsibility for damages after auditor failure to detect fraud. Accounting, Organizations and Society, 87, 101172. https://doi.org/10.1016/j.aos.2020.101172
- Calamaro, N., et al. (2021). An energy-fraud detection system capable of distinguishing frauds from other energy flow anomalies in an urban environment. Sustainability (Switzerland), 13(19).
- Chen, Y., & Wu, Z. (2023). Financial fraud detection of listed companies in China: A machine learning approach. Sustainability, 15(1), 105. https://doi.org/10.3390/su15010105
- Dang, T. K., et al. (2021). Machine learning based on resampling approaches and deep reinforcement learning for credit card fraud detection systems. Applied Sciences (Switzerland), 11(21).
- Daniel Rife, S. Lacy, & F. J. FICO. (2006). Analysis of media messages (application of quantitative content analysis in research). Translated by Mahdekht Borujerdi Alavi. Tehran: Soroush [In Persian].
- Fazli, N. A. (2008). Education, research and promotion (content analysis of social sciences letters). Research Profile, 1(1).
- Ghorbin, A., Abdoli, M. R., Valian, H., & Bodlai, H. (2023). Evaluation of the internal audit functions of the corporate citizen. Development and Capital, 8(1), 143-165. doi:10.22103/jdc.2022.19858.1273 [In Persian].
- Gol Iri, T., Kurd, S., & Khari, R. (2019). Auditor’s responsibility and detection of fraud. Shabak, 6(6 (series 57)), 135-142. SID. https://sid.ir/paper/525408/fa [In Persian].
- Goldman, P., & Kaufman, H. (2015). Practical guide to fraud risks and anti-fraud controls. Translated by Amir Pouria Nasab and Mohsen Ghasemi. Tehran: Iranian Accounting Publishing House [In Persian].
- Gupta, P. (2023). Leveraging machine learning and artificial intelligence for fraud prevention. SSRG International Journal of Computer Science and Engineering, 10(5), 47-52. https://doi.org/10.14445/23488387/IJCSE-V10I5P107
- Habibpour, M., Gharoun, H., Mehdipour, M. R., Tajally, A. R., Asgharnezhad, H., Shamsi, A., Khosravi, A., & Nahavandi, S. (2023). Uncertainty-aware credit card fraud detection using deep learning. Engineering Applications of Artificial Intelligence, 123, 106248. https://doi.org/10.1016/j.engappai.2023.106248
- Hariom Tatsat, S. P., & Lookabaugh, B. (2020). Machine learning and data science blueprints for finance. O’Reilly Media, Inc.
- Hassan Hekami. (2012). Cognitive approach; history, vision and attention, cognitive science and machine intelligence [In Persian].
- Hilal, W., et al. (2022). Financial fraud: A review of anomaly detection techniques and recent advances. Expert Systems with Applications, 193, 34.
- Holsti, L. R. (1994). Content analysis in social and human sciences. Translated by Nader Salarzadeh Amiri. Tehran: Allameh Tabatabai University Publications (date of translation of the original work in 1969) [In Persian].
- Iris H-Y Chiu. (2023). An institutional account of responsiveness in financial regulation: Examining the fallacy and limits of ‘same activity, same risks, same rules’ as the answer to financial innovation and regulatory arbitrage. Computer Law & Security Review, 51. https://doi.org/10.1016/j.clsr.2023.105868
- Jahangir Yari. (2017). Investigation of obstacles to creating a learning organization in Iran Khodro Training Center. First year, number 4 [In Persian].
- Jalal Jamali, A. Asghar Motaghi, & A. Mohammadi. (2021). Comparative study of bankruptcy prediction models and providing an optimal model for Iran’s economic environment. Development and Capital, 6(2), 111-134. doi:10.22103/jdc.2022.18728.1187 [In Persian].
- Josephine Isabella, S., et al. (2020). An efficient study of fraud detection system using ML techniques. Lecture Notes in Networks and Systems, 118, 59-67.
- Kalbande, D., et al. (2021). A fraud detection system using machine learning. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). https://doi.org/10.1109/ICCCNT51525.2021.9580102
- Kanika & J. Singla. (2019). Online banking fraud detection system: A review. International Journal of Advanced Trends in Computer Science and Engineering, 8(3), 959-962.
- Kanika & J. Singla. (2020). A survey of deep learning based online transactions fraud detection systems. In 2020 International Conference on Intelligent Engineering and Management (ICIEM). IEEE. https://doi.org/10.1109/ICIEM48762.2020.9160200
- Kanika & J. Singla. (2022). A novel framework for online transaction fraud detection system based on deep neural network. Journal of Intelligent and Fuzzy Systems, 43(1), 927-937.
- Kanika, Singla, J., & Nikita. (2021). Comparing ROC curve based thresholding methods in online transactions fraud detection system using deep learning. In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). https://doi.org/10.1109/icccis51004.2021.9397167
- Kazemi, T. (2015). Choosing the optimal stock portfolio from among the stocks of companies admitted to the Tehran Stock Exchange using the ant algorithm. Master’s thesis, accounting field, Islamic Azad University, Tehran branch [In Persian].
- Khattri, V., et al. (2020). Plastic card circumvention: An infirmity of authenticity and authorization. Journal of Financial Crime, 27(3), 959-975.
- Kodreh, D. (2013). Prevention and detection of fraud with the help of computer. Translated by Amir Pourianesb and Aida Pouria Nasb. Tehran: Hoshiar Momis Publications [In Persian].
- Krippendorff, K. (2022). Content analysis: An introduction to its methodology. Sage Publications. https://doi.org/10.4135/9781071878781
- Kurdestani, G. R., & Ashtab, A. (2009). Profit management forecast based on profit per share adjustment. Development and Capital, 2(2), 141-158. doi:10.22103/jdc.2009.1912 [In Persian].
- Lee, C. (2022). Deep learning-based detection of tax frauds: An application to property acquisition tax. Data Technologies and Applications, 56(3), 329-341. https://doi.org/10.1108/DTA-06-2021-0134
- Liang, Y., et al. (2021). The application of synthetic data generation and data-driven modelling in the development of a fraud detection system for fuel bunkering. Measurement: Sensors, 18.
- Mansour Sadeghi Ma Lamiri. (2013). The three behaviors of miserliness, moderation, and extravagance from a systemic point of view. Two Scientific Research Quarterly Journals of Islamic Management, 22(1), 141-166 [In Persian].
- Mashayikhi, B., et al. (2013). Compilation of audit quality model. Stock Exchange and Securities Quarterly, 6(23), 103-137 [In Persian].
- Mehrani, S., Ganji, H., Tahriri, A., & Askari, M. R. (2009). Evaluating the ranking of companies based on accounting and non-accounting information and comparing it with the ranking of companies in the Tehran Stock Exchange. Development and Capital, 2(1), 7-32. doi:10.22103/jdc.2009.1899 [In Persian].
- Mendonça, M. O., Netto, S. L., Diniz, P. S., & Theodoridis, S. (2024). Machine learning: Review and trends. Signal Processing and Machine Learning Theory, 869-959.
- Miriyagoub Seyed Rezaei. (2015). Diversification and complexity of the administrative system as a model for the optimal administration of the capital. Geographical Research Quarterly, 31(4) [In Persian].
- Modares, A., & Platoni, A. (2010). Profit management in companies listed on the Tehran Stock Exchange. Development and Capital, 2(2), 51-72. doi:10.22103/jdc.2009.190 [In Persian].
- Mohammad Reza Qudosi et al. (2018). Presentation of knowledge governance framework in social networks. Two Scientific Quarterly Journals of Information Management, 5(1) [In Persian].
- Momeni Rad, A., Ali Abadi, K., Fardanesh, H., & Mazini, N. (2013). Qualitative content analysis in research: Nature, stages, and validity of results. Educational Measurement, 4(14).
- Moreira, M. Â. L., Rocha Junior, C. de S., Lima Silva, D. F., Castro Junior, M. A. P., Araújo Costa, I. P., Gomes, C. F. S., & Santos, M. (2022). Exploratory analysis and implementation of machine learning techniques for predictive assessment of fraud in banking systems. Procedia Computer Science, 214, 117-124. https://doi.org/10.1016/j.procs.2022.11.156
- Namazi, M., & Nazimi, A. (2008). An overview of the accounting research done in Tehran Stock Exchange. Development and Capital, 1(2), 9-48. doi:10.22103/jdc.2008.1891 [In Persian].
- Navidi Abbaspour, E., & Vaezi, J. (2022). Determinants of auditing ability to detect fraud: Internal and external factors. Case study: Auditors of auditing institutions that are members of the Certified Public Accountants Society of Iran. 12th International Conference on Modern Researches in Management, Economics, Accounting and Banking. https://civilica.com/doc/1566301 [In Persian].
- Nazeer, I., Prasad, K. D. V., Bahadur, P., Bapat, V., & Kurian, M. J. (2023). Synchronization of AI and deep learning for credit card fraud detection. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 52-59.
- Pallavi, C., et al. (2021). A relative investigation of various algorithms for online financial fraud detection techniques. Advances in Parallel Computing, 39, 22-32.
- Qaidi, M. R., et al. (2016). Content analysis method, from quantitative to qualitative. Scientific-Research Quarterly “Psychological Methods and Models”, 7(23), 57-82 [In Persian].
- Quintin-John Smith, R., & Valverde, R. (2021). A perceptron-based neural network data analytics architecture for the detection of fraud in credit card transactions in financial legacy systems. WSEAS Transactions on Systems and Control. https://doi.org/10.37394/23203.2021.16.31
- Rahman, M. Y. T. M. H. N. I. K. H. A. (2022). Fraud detection during financial transactions using machine learning and deep learning techniques. 2022 IEEE International Conference on Communications, Computing, Cybersecurity and Informatics, CCCI 2022.
- Raneem Khaled, H. A., & Ehab K. A. Mohamed. (2021). The sustainable development goals and corporate sustainability performance: Mapping, extent, and determinants. Journal of Cleaner Production, 311.
- Rezaian, A. (1999). System analysis and design. Tehran: Samt [In Persian].
- Rodrigues, V. F., et al. (2022). Fraud detection and prevention in e-commerce: A systematic literature review. Electronic Commerce Research and Applications, 101207.
- Sadgali, I., Sael, N., & Benabbou, F. (2019). Performance of machine learning techniques in the detection of financial frauds. Procedia Computer Science, 148, 45-54.
- Sahayasakila, V., et al. (2019). Credit card fraud detection system using SMOTE technique and whale optimization algorithm. International Journal of Engineering and Advanced Technology, 8(5), 190-192.
- Salwa Al Balawi, N. A. (2023). Credit-card fraud detection system using neural networks. International Arab Journal of Information Technology, 20(2).
- Sange, P. (1999). The Fifth Commandment. Translated by Hafez Kamal Hedayat, Mohammad Roshan. Tehran: Publication of Industrial Management Organization [In Persian].
- Sarmad, Z., Bazargan, A., & Hijazi, E. (2018). Research methods in behavioral sciences. Tehran: Age Publishing [In Persian].
- Seera, M., et al. (2021). An intelligent payment card fraud detection system. Annals of Operations Research.
- , Siavash, Nourbakhsh, S. F., et al. (2015). Complexity theory and claggism approach in geomorphic systems. Geographical Studies of Arid Regions, 6(23) [In Persian].
- Shokohi Fard, S., Abolhasani, A., & Farhang, A. A. (2021). Effects of corruption on financial fragility in Iran: Quantile regression approach. Development and Capital, 6(2), 93-110. doi:10.22103/jdc.2021.18460.1169 [In Persian].
- Strauss, A., & Corbin, J. (2014). Fundamentals of qualitative research: Techniques and stages of field theory production. Ebrahim Afshar. Tehran: Nei Publishing [In Persian].
- Sun, G., Li, T., Ai, Y., & Li, Q. (2023). Digital finance and corporate financial fraud. International Review of Financial Analysis, 87. https://doi.org/10.1016/j.irfa.2023.102566
- Thaghafi, A., & Bahar Moghadam, M. (2009). Effective drivers on profit management. Development and Capital, 1(2), 103-125. doi:10.22103/jdc.2008.1894 [In Persian].
- Tyagi, N. K., & Goyal, M. (2022). Two-tier model of exports drawback fraud detection system using intuitionistic fuzzy game theory. Intelligent Decision Technologies, 16(2), 299-313.
- Vanini, P., Rossi, S., Zvizdic, E., et al. (2023). Online payment fraud: From anomaly detection to risk management. Financ Innov, 9, 66. https://doi.org/10.1186/s40854-023-00470-w
- Zhang, G., et al. (2022). EFraudCom: An e-commerce fraud detection system via competitive graph neural networks. ACM Transactions on Information Systems, 40(3).
- Zhu, X., Ao, X., Qin, Z., Chang, Y., Liu, Y., He, Q., & Li, J. (2021). Intelligent financial fraud detection practices in the post-pandemic era. Volume 2, Issue 4. https://doi.org/10.1016/j.xinn.2021.100176
References (In Persian)
- Accounting Standards Committee. (n.d.). Accounting standards. Tehran: Organization for Accounting and Auditing. (In Persian)
- Baqarian, A. (2006). Electronic stock exchange; standards and intelligent supervisory systems. In Proceedings of the First National Electronic Stock Exchange Conference (pp. 1-10). Qazvin: Islamic Azad University, Qazvin Branch. (In Persian)
- Bolu, G., Barzeedeh, F., & Aleyari Abadi, H. (2020). A pattern for evaluating fraud risk in auditing financial statements. Journal of Accounting Knowledge, 11(4), 25-45. https://doi.org/10.22103/jak.2020.15880.3254 (In Persian)
- Bahrami, A., Nouroushe, I., Rad, A., & Molkareni, A. (2021). Financial statement fraud and new techniques used to detect it. Accounting and Auditing Studies, 10(38), 105-118. https://doi.org/10.22034/iaas.2021.134547 (In Persian)
- Fazli, N. A. (1997). Education, research and promotion (content analysis of social sciences letters). Index of Research, 1(1), 1-16. (In Persian)
- Ghaedi, M., & Colleagues. (2016). Content analysis method, from quantitative to qualitative. Scientific-Research Quarterly "Methods and Models of Psychology, 7(23), 57-82. (In Persian)
- Ghorbanian, A., Abdoli, M., Velian, H., & Bodlaei, H. (2023). Evaluation of the performance of corporate citizen internal audit functions. Development and Capital, 8(1), 143-165. https://doi.org/10.22103/jdc.2022.19858.1273 (In Persian)
- Ghodosi, M. R., & Colleagues. (2019). Presenting a knowledge governance framework in social networks. Journal of Information Management, 5(1). (In Persian)
- Goldman, P., & Kaufman, H. (2016). A practical guide to fraud risks and anti-fraud controls. Translated by Amir PourianSab and Mohsen Ghasemi. Tehran: Hesab Afzar Iraniyan Publications. (In Persian)
- Hakimi, H. (2013). Cognitive approach: History, vision, and attention in cognitive sciences and machine intelligence. Tehran: Sam Publishing. (In Persian)
- Holsti, L. R. (1975). Content analysis for the social sciences and humanities. Translated by Nader Salarzadeh Amiri. Tehran: Allameh Tabatabai University Press (Translation date of the original work in 1969). (In Persian)
- Jalali Jamali, A., Motaqi, A., & Mohammadi, A. (2022). Comparative study of bankruptcy prediction models and presentation of an optimal model for the Iranian economic environment. Development and Capital, 6(2), 111-134. https://doi.org/10.22103/jdc.2022.18728.1187 (In Persian)
- Kazemi, T. (2016). Optimal portfolio selection from among the stocks of companies accepted in Tehran Stock Exchange using the ant colony algorithm. Master’s thesis, Department of Accounting, Islamic Azad University, Tehran Central Branch. (In Persian)
- Kodreh, D. (2012). Computer-assisted fraud prevention and detection. Translated by Amir PourianSab and Aida PourianSab. Tehran: Hoshiar Momis Publications. (In Persian)
- Kordestani, G. R., & Ashtyab, A. (2009). Predicting earnings management based on earnings per share adjustment. Development and Capital, 2(2), 141-158. https://doi.org/10.22103/jdc.2009.1912 (In Persian)
- Mehrbani, S., Ganji, H., Taheri, A., & Asgari, M. R. (2009). Evaluation of company ranking based on accounting and non-accounting information and comparison with company ranking in Tehran Stock Exchange. Development and Capital, 2(1), 7-32. https://doi.org/10.22103/jdc.2009.1899 (In Persian)
- Meshaiki, B., & Colleagues. (2013). Developing an auditing quality model. Journal of Securities and Stock Exchange, 6(23), 103-137. (In Persian)
- Miri Yaqoob Seyedrezaee. (2016). Diversification and complication of the administrative system as a model for optimal management of the capital. Journal of Geography Research, 31(4), 123-142. (In Persian)
- Momeni Rad, A., Ali Abadi, K., Fardanesh, H., & Mazini, N. (2013). Qualitative content analysis in research: Nature, stages, and validity of results. Educational Measurement, 4(14). (In Persian)
- Modares, A., & Aflatoni, A. (2009). Earnings management in companies accepted in Tehran Stock Exchange. Development and Capital, 2(2), 51-72. https://doi.org/10.22103/jdc.2009.190 (In Persian)
- Namazi, M., & Nazimi, A. (2008). A review of accounting research conducted on the Tehran Stock Exchange. Development and Capital, 1(2), 9-48. https://doi.org/10.22103/jdc.2008.1891 (In Persian)
- Novidi Abbaspour, E., & Vaezi, J. (2022). Factors determining the ability of auditing to detect fraud: Internal and external factors. A case study: Auditors of auditing institutions that are members of the Society of Iranian Certified Public Accountants. 12th International Conference on Novel Research in Management, Economics, Accounting and Banking. https://civilica.com/doc/1566301. (In Persian)
- Raif, D., Liss, S., & Feick, F. G. (2006). Analyzing media messages (using quantitative content analysis in research) (2nd ed.). Translated by Mahdokht Boroujerdi Alavi. Tehran: Soroush. (In Persian)
- Raeesi Vanani, I., Bagherian Kasgari, A., Amiri, M., & Homayoun, S. (2023). A comprehensive analysis of two decades in intelligent surveillance systems for financial fraud detection research. Journal of Development and Capital. https://doi.org/10.22103/jdc.2023.22263.1426 (In Persian)
- Rezaeiyan, A. (1998). Analysis and design of systems: Methods and techniques of system analysis and design. Tehran: Samt. (In Persian)
- Sarmad, Z., Bazargan, A., & Hejazi, A. (2011). Research methods in behavioral sciences. Tehran: Agah Publishing. (In Persian)
- Senge, P. (1997). The fifth discipline. Translated by Hafez Kamal Hedayat, Mohammad Roshan. Tehran: Industrial Management Organization Publications. (In Persian)
- Shayan, S., Nourbakhsh, S. F., & Colleagues. (2016). Complexity theory and collage approach in geomorphic systems. Journal of Geography of Arid Regions, 6(20), 1-14. (In Persian)
- Shokouhi Fard, S., Abolhasani, A., & Farhang, A. (2021). The effects of corruption on financial fragility in Iran: A quantile regression approach. Development and Capital, 6(2), 93-110. https://doi.org/10.22103/jdc.2021.18460.1169 (In Persian)
- Strauss, A., & Corbin, J. (2015). Basics of qualitative research: Techniques and procedures for generating grounded theory (2nd ed.). Sage Publications. (In Persian)
- Thaghafi, A., & Bahar Moghaddam, M. (2008). Effective factors on earnings management. Development and Capital, 1(2), 103-125. https://doi.org/10.22103/jdc.2008.1894 (In Persian)
- Yari, J. (2008). Investigating the barriers to creating a learning organization in the Iran Khodro Training Center. Journal of Human Resource Management Studies, 1(4), 1-10. (In Persian)