مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری اطلاعات،گروه مدیریت، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 دانشیار، گروه مهندسی کامپیوتر، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران  نویسنده مسئول: esmaeilpour@iauh.ac.ir

3 استادیار، گروه علم اطلاعات و دانش‌شناسی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

4 استاد گروه علم اطلاعات و دانش‌شناسی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

5 استادیار، گروه مهندسی صنایع، دانشگاه صنعتی شریف، تهران، ایران

چکیده

بانک‌ها برای تسهیلات سرمایه‌ثابت از فرایند‌های پیچیده و طولانی‌مدت شامل مراحل، نقاط کنترل و تایید زیاد برخوردارند. اینگونه فرایندها در ایجاد و توسعه واحدهای صنعتی، معدنی و گردشگری از اهمیت فزاینده‌ای برخوردارند. تجزیه و تحلیل مداوم اینگونه فرایندها برای ارتقاء، بهبود مستمر و کسب دانش از انها اهمیت فزاینده‌ای دارد. هدف اصلی تحقیق حاضر ارائه چارجوب روش‌شناختی جامع بر پایه فرایندکاوی با ترکیب با داده‌کاوی در خصوص تجزیه و تحلیل فرایندهای تسهیلات سرمایه ثابت است. روش‌شناسی بکاررفته در پژوهش حاضر برگرفته از تکنیک‌ها و مفاهیم فرایندکاوی و داده‌کاوی بر پایه داده‌های رخداد سیستم تسهیلات، بانکی فعال در ایران است. این روش شامل نه فاز شروع، آماده‌سازی، بازرسی، کاوش و تحلیل، ارزیابی، تحلیل چند بعدی فرایندی، پیش‌بینی، بررسی نتایج و بهبود است. هر کدام از فازها شامل چندین مولفه و به صورت تکرارشونده است. از جمله نتایج پژوهش حاضر استخراج فرایند واقعی، شناسایی گلوگاه‌ها، مراحل پرتکرار در نمونه و دارای فراوانی و گونه‌های فرایند است. افزون بر این شناسایی شعب و افراد دارای بیشترین نقش و ویژگی‌های داده‌ای موثر بر کاهش زمان پرداخت تسهیلات، تحلیل فرایند از ابعادی ماننداستان از دیگر یافته‌ها بود و نشان داد تجزیه و تحلیل استانی دانش خوبی در اختیار می‌گذارد. یکی از ابتکارات تحقیق حاضر استفاده از داده‌کاوی برای پیش‌بینی زمان پرداخت تسهیلات بود. در مقایسه روش‌های متنوع، الگوریتم درخت تصمیم‌گیری با دقت 72 درصد بهترین عملکرد را داشت.در نهایت علاوه بر کشف انحرافات، بر مبنای ایجاد داده‌های رخداد و تحلیل آن، فرایند بهبود‌یافته استخراج شد،که نشان از بهبود 67 درصدی بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A methodological framework for the analysis of Facility processes based on process mining and data mining: a case study of the fixed capital facilities processes

نویسندگان [English]

  • Ehsan allah Khoshkhoy Nilash 1
  • Mansour Esmaeilpour 2
  • Behrooz Bayat 3
  • Alireza Isfandyari Moghaddam 4
  • Erfan Hassannayebi 5

1 PhD Student of Information Technology Management, Department of Management, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Associate Professor, Department of Computer Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran Corresponding Author: esmaeilpour@iauh.ac.ir

3 Assistant Professor, Department of Knowledge and Information Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran

4 Professor, Department of Knowledge and Information Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran

5 Assistant Professor, Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

چکیده [English]

Banks have complex and long-term processes for facilities, including many stages, control points and approvals. Continuous analysis of such processes is increasingly important for continuous improvement and gaining knowledge from them. The main goal of the present research is to provide a comprehensive methodological framework based on process mining and data mining regarding the analysis of fixed capital facility processes. The method used in the present research is derived from the techniques of process mining and data mining based on the event log of the facility system, an active bank in Iran. This method includes nine phases of initiation, preparation, inspection, exploration and analysis, evaluation, multi-dimensional analysis, prediction, review of results and improvement. Among the results of the present research is the extraction of the real process model, identification of bottlenecks, frequent activities in a case and all cases and process variant. In addition to this identification of branches and people with the most important roles and based on data features in reducing the time of payment of facilities, the analysis of the process from dimensions such as the province was one of the other findings. One of the initiatives of the present research was the use of data mining to predict the payment time of facilities. In the comparison of various methods, the decision tree algorithm had the best performance with 72% accuracy. In addition to identifying deviations, based on the creation of event log and its analysis, the improved process of extracting which showed a 67% improvement.

Introduction

Today's businesses benefit from a number of processes in order to earn more income and better services (Dakich et al., 2018). They are looking for processes that have better and more successful performance in order to achieve organizational goals and optimal use of resources in the operational environment (Van Der Aalst, 2016). Therefore, continuous analysis of processes for continuous improvement in organizations is very important.
Considering that the processes of providing facilities, especially fixed capital, are very effective in the creation and development of industrial, mineral and tourism units, having knowledge of them is of increasing importance. One of the efficient and effective methods for analyzing and improving business processes is process mining. With the help of its various concepts and techniques this method provides useful knowledge for the detailed examination of processes and how they are realized.
On the other hand, the efficient method of data mining, which provides the possibility of extracting knowledge from historical and predictive data (Basha, 2017), can be combined with the process mining method. With the investigations carried out, the methodological framework in order to provide process-centric and data-centric analysis, including the discovery of the real process model of facility payment, performance analysis of such processes, analysis of process varints, multi-dimensional process-centric analysis, payment time prediction, recommendations for improvement and process improvement based on event log simulation is not presented. Also, due to the novelty of the process mining method, the purpose of this research is to provide a comprehensive methodological framework using these techniques, concepts and tools of process mining in combination with data mining methods regarding the analysis of business processes with the study of fixed capital facilities processes.
Research Question(s)
How to provide a methodological framework for the analysis of fixed capital processes by using the techniques and concepts of process analysis and data mining methods?

Literature Review

In Table No. 1, a number of related studies are compared with each other.
Table 1.  Summary of the research conducted




Research


Business


Components used


Event log


Miners






(Urrea-Contreras et al., 2017)


SME organizations


Event Log extraction, discovery, conformance checking, extend model, and return integrated model


software development system (JIRA)


inductive




(EL KODSSI & Sbai, 2024)


Smart environments


Data selection, data transformation, generation of event log, discovery, enhancement


Unstructured sensor generated data


MDA and machine learning




(Rashed et al., 2023)


hospital


Preprocessing, model discovery and analysis


Heart surgery unit in a hospital in Egypt


heuristic, inductive, ILP and ETM




(Erdogan & Tarhan, 2022)


Emergency


Determining goals, extracting event log, pre-processing, applying multi-perspective process mining, analysis, recommendation for improvement and evaluation of results.


Emergency system log


fuzzy




(Pan & Zhang, 2021)


Construction project


Event log generation and preparation, discovery and validation


Example of a construction project


Fuzzy and inductive




(Lorenz et al., 2021)


Production business


Mapping, analysis and improvement


Production business event log


fuzzy




(Augusto et al., 202)


Healthcare trends


Planning, data extraction, data processing and evaluation


Patients in Victoria, Australia


fuzzy




(Pang et al., 2021)


Acute care and treatment processes


Coding and categorizing activities, extracting and filtering event log, discovering and improving the process model and performance analysis


Stroke care process


IDHM miner, alpha, fuzzy and heuristic




(Ramos et al., 2021)


ERP configuration, intelligent agriculture and computer configuration


Extract configuration event log, control and clean data based on feature model, build data clusters and discover related workflow.


 


Greed, hierarchy and genetics




A number of studies are not comprehensive in using the concepts of data mining and process mining. Some of them lack features such as multidimensional process centric analysis, event log simulation for improvement, evaluation of results with field specialists and so on. Comparing the studies, each of these cases can be expressed as a research gap. It is also necessary to consider all the components and phases as a methodological framework as another research gap.
 

Methodology

The method used in the present research is based on the techniques, concepts and methods of the process mining in its manifest (Will van der Alast et al., 2011). In this research, the event log of the fixed capital facility system of one of the active banks in Iran has been used. The proposed framework includes nine phases of initialization, preparation, inspection, analysis, evaluation, process centric analysis, prediction, transfer results and finally improvement. Figure 1 depicts the mentioned methodological framework.
Figure 1. The mentioned methodological framework
 

Results

Process models were discovered based on alpha, alpha++, heuristic, genetic, fuzzy and inductive techniques. By comparing inductive and fuzzy model, fuzzy model is very effective due to less edge filter and coverage of all activities. Process bottlenecks, people and branches with the most important roles were identified.
The heuristic algorithm with a value of 0.833 had the best performance in the average values of the quality indicators of the process model. In Figure 2, the mentioned methods are compared.
Figure 2. Comparison of miners
 
Analyzing the impact of data features with a target throughput time of 271 days, according to the dimensions of the Civil Partnership Bases contract, Riyal Civil Partnership Contracts and SME customers had the greatest impact in reducing the process throughput time.
The J48 decision tree algorithm had the best performance with 72% accuracy compared to all the data mining methods used.
Figure 3. Results of data mining analysis with J48 algorithm
 
203 records were used to simulate new event data. The results of the analysis showed a 67% improvement.
Keywords: Fixed capital processes, methodological framework, event log, process mining, data mining.
 
 
 
 

کلیدواژه‌ها [English]

  • Fixed capital processes
  • methodological framework
  • event log
  • process mining
  • data mining
  1. محمدی نژاد، م؛ و شمس علیئی، ف. (1398). استفاده از فرآیندکاوی در سیستم‌های آگاهی وضعیتی سایبری. In سومین همایش ملی پیشرفت‌های معماری سازمانی. تهران. https://civilica.com/doc/976336
  2. اسماعیلپور، م.، گرجی، ی.، اله، ن.، اسلامبولچی، م. ر؛ و امیرکبیری. (2021). مهندسی مجدد ساختار سازمانی با تکنیک‌های فرآیندکاوی؛ مطالعه موردی در آموزش‌وپرورش مازندران. نشریه مهندسی فرآیندها، 9(15)، 1-18. http://jpe.mazums.ac.ir/article-۱-۱۶۴-fa.html
  3. جعفری، ج.، ستایشی و؛ و سعید. (2019). تأثیر سبک‌شناختی بر درک پذیری مدل‌های فرآیند کسب‌وکار. مطالعات مدیریت کسب‌وکار هوشمند، 7(28)، 111-134. https://doi.org/10.22054/ims.2019.10234
  4. خوشخوی نیلاش، ا.، تمجید یامچلو و؛ و راد. (2021). تحلیل عملکرد و بهبود فرآیندهای ارائه تسهیلات سرمایه در گردش با رویکرد فرآیندکاوی: مطالعه موردی فرآیندهای ارائه تسهیلات بانک صنعت و معدن. مطالعات مدیریت کسب‌وکار هوشمند، 9(36)، 37-71. https://doi.org/10.22054/ims.2021.58106.1896
  5. مصطفائی دولت آباد، خ.، آذر، ع.، مقبل باعرض، ع؛ و پرویزیان، ک. (1398). ارزیابی فرآیندکاوی در کشف مدل فرآیندهای نیمه اتوماتیک صنعت بانکداری (مورد مطالعه فرآیند صدور ضمانت نامه بانکی). https://doi.org/10.22054/jims.2019.9605

 

References

  1. Urrea-Contreras, S. J., Astorga-Vargas, M. A., Flores-Rios, B. L., Ibarra-Esquer, J. E., Gonzalez-Navarro, F. F., Garcia Pacheco, I., & Pacheco Agüero, C. L. (2024). Applying process mining: The reality of a software development SME. Applied Sciences, 14(4), 1402. https://doi.org/10.3390/app14041402
  2. El Kodssi, I., & Sbai, H. (2024). Applying process mining to generate business process models from smart environments. International Journal of Computing and Digital Systems, 16(1), 705-717. http://dx.doi.org/10.12785/ijcds/160152
  3. Rashed, A. H. M., El-Attar, N. E., Abdelminaam, D. S., & Abdelfatah, M. (2023). Analysis of patients’ careflows using process mining. PLOS ONE, 18(2), e0281836. http://dx.doi.org/10.12785/ijcds/160152
  4. Erdogan, T. G., & Tarhan, A. K. (2022). Multi-perspective process mining for emergency processes. Health Informatics Journal, 28(1), 14604582221077195. https://doi.org/10.1177/14604582221077195
  5. Anuwatvisit, S., Tungkasthan, A., & Premchaiswadi, W. (2012). Bottleneck mining and Petri net simulation in educational situations. Paper presented at the 2012 Tenth International Conference on ICT and Knowledge Engineering. https://doi.org/10.1109/ICTKE.2012.6408562
  6. Augusto, A., Deitz, T., Faux, N., Manski-Nankervis, J.-A., & Capurro, D. (2021). Process mining-driven analysis of the COVID-19 impact on the vaccinations of Victorian patients. arXiv preprint arXiv:2112.04634. https://doi.org/10.48550/arXiv.2112.04634
  7. Basha, S. G. (2017). Importance of data mining in banking sectors. http://ijsetr.com/uploads/543261IJSETR13678-226.pdf
  8. Blevi, L., Delporte, L., & Robbrecht, J. (2017). Process mining on the loan application process of a Dutch financial institute. BPI Challenge, 328-343. https://www.win.tue.nl/bpi/2017/bpi2017_winner_professional.pdf
  9. Cerezo, R., Bogarín, A., Esteban, M., & Romero, C. (2020). Process mining for self-regulated learning assessment in e-learning. Journal of Computing in Higher Education, 32(1), 74-88. https://doi.org/10.1007/s12528-019-09225-y
  10. Cho, M., Song, M., Comuzzi, M., & Yoo, S. (2017). Evaluating the effect of best practices for business process redesign: An evidence-based approach based on process mining techniques. Decision Support Systems, 104, 92-103. https://doi.org/10.1016/j.dss.2017.10.004
  11. Dakic, D., Stefanovic, D., Cosic, I., Lolic, T., Medojevic, M., & Katalinic, B. (2018). Business process mining application: A literature review. Paper presented at the Proceedings of the 29th DAAAM International Symposium. https://doi.org/10.2507/29th.daaam.proceedings.125
  12. De Weerdt, J., De Backer, M., Vanthienen, J., & Baesens, B. (2012). A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Information Systems, 37(7), 654-676. https://doi.org/10.1016/j.is.2012.02.004
  13. Duma, D., & Aringhieri, R. (2020). An ad hoc process mining approach to discover patient paths of an emergency department. Flexible Services and Manufacturing Journal, 32(1), 6-34. https://doi.org/10.1007/s10696-018-9330-1
  14. He, Z., Wu, Q., Wen, L., & Fu, G. (2019). A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal mines. Safety Science, 111, 154-166. https://doi.org/10.1016/j.ssci.2018.07.006
  15. Kouzari, E., & Stamelos, I. (2018). Process mining applied on library information systems: A case study. Library & Information Science Research, 40(3-4), 245-254. https://doi.org/10.1016/j.lisr.2018.09.006
  16. Lorenz, R., Senoner, J., Sihn, W., & Netland, T. (2021). Using process mining to improve productivity in make-to-stock manufacturing. International Journal of Production Research, 1-12. https://doi.org/10.1080/00207543.2021.1906460
  17. Pan, Y., & Zhang, L. (2021). Automated process discovery from event logs in BIM construction projects. Automation in Construction, 127, 103713. https://doi.org/10.1016/j.autcon.2021.103713
  18. Pang, J., Xu, H., Ren, J., Yang, J., Li, M., Lu, D., & Zhao, D. (2021). Process mining framework with time perspective for understanding acute care: A case study of AIS in hospitals. BMC Medical Informatics and Decision Making, 21(1), 1-10. https://doi.org/10.1186/s12911-021-01725-1
  19. Pereira, G. B., Santos, E. A. P., & Maceno, M. M. C. (2020). Process mining project methodology in healthcare: A case study in a tertiary hospital. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 1-14. https://doi.org/10.1007/s13721-020-00227-w
  20. Ramos-Gutiérrez, B., Varela-Vaca, Á. J., Galindo, J. A., Gómez-López, M. T., & Benavides, D. (2021). Discovering configuration workflows from existing logs using process mining. Empirical Software Engineering, 26(1), 1-41. https://doi.org/10.1007/s10664-020-09911-x
  21. Reijers, H. A., & Mansar, S. L. (2005). Best practices in business process redesign: An overview and qualitative evaluation of successful redesign heuristics. Omega, 33(4), 283-306. https://doi.org/10.1016/j.omega.2004.04.012
  22. Schuh, G., Gützlaff, A., Schmitz, S., & van der Aalst, W. M. (2020). Data-based description of process performance in end-to-end order processing. CIRP Annals. https://doi.org/10.1016/j.cirp.2020.03.013
  23. Stefanini, A., Aloini, D., Benevento, E., Dulmin, R., & Mininno, V. (2020). A process mining methodology for modeling unstructured processes. Knowledge and Process Management, 27(4), 294-310. https://doi.org/10.1002/kpm.1649
  24. Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. Information Systems, 64, 132-150. https://doi.org/10.1016/j.is.2016.07.011
  25. Van Der Aalst, W. (2016). Data science in action. In Process Mining (pp. 30-35). Springer.
  26. Van Der Aalst, W., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., … Buijs, J. (2011). Process mining manifesto. Paper presented at the International Conference on Business Process Management. https://doi.org/10.1007/978-3-642-28108-2_19
  27. Yazici, I. E., & Engin, O. (2019). Use of process mining in bank real estate transactions and visualization with fuzzy models. Paper presented at the International Conference on Intelligent and Fuzzy Systems. https://doi.org/10.1007/978-3-030-23756-1_33
  28. Van Der Aalst, W. M. (2015). Business process simulation survival guide. In Handbook on Business Process Management 1 (pp. 337-370). Springer. https://doi.org/10.1007/978-3-642-45100-3_15
  29. Buijs, J. C., van Dongen, B. F., & van der Aalst, W. M. (2014). Quality dimensions in process discovery: The importance of fitness, precision, generalization, and simplicity. International Journal of Cooperative Information Systems, 23(01), 1440001. https://doi.org/10.1142/S0218843014400012

References [In Persian]

  1. Mohammadinejad, M., & Shams Alii, F. (2018). Using process mining in cyber situational awareness systems. In The Third National Conference on Organizational Architecture Developments. Tehran. https://civilica.com/doc/976336 [In Persian]
  2. Esmailpour, M., Gerji, Y., Elah, N., Islambolchi, M., & Amirkabiri, R. (2021). Reengineering the organizational structure with process mining techniques: A case study in Mazandaran education. Journal of Process Engineering, 9(15), 1-18. http://jpe.mazums.ac.ir/article-1-164-fa.html [In Persian]
  3. Jafari, J., & Setayeshi, S. (2019). The effect of cognitive style on the understandability of business process models. Business Intelligence Management Studies, 7(28), 111-134. https://doi.org/10.22054/ims.2019.10234 [In Persian]
  4. Khoshkhov Nilash, E., Tamjid Yamchelo, & Rad. (2021). Performance analysis and improvement of Bank of Industry and Mine working capital facility processes based on process mining approach. Business Intelligence Management Studies, 9(36), 37-71. https://doi.org/10.22054/ims.2021.58106.1896 [In Persian]
  5. Mostafai Daulatabad, K., Azar, A., Maqbal Baara’, A., & Parvizian, K. (2018). Evaluation of process mining in the discovery of the model of semi-automatic processes of the banking industry: Case study of the bank guarantee issuance process. https://doi.org/10.22054/jims.2019.9605 [In Persian]