مطالعات مدیریت کسب و کار هوشمند

نویسندگان

1 استادیار، عضو هیئت‌علمی، موسسه آموزش عالی مهر البرز، تهران.

2  کارشناسی ارشد، مدیریت فناوری اطلاعات، موسسه آموزش عالی مهر البرز، تهران.

3 کارشناسی ارشد، مدیریت فناوری اطلاعات، موسسه آموزش عالی مهر البرز. (نویسنده مسئول)؛ a_ashrafy@yahoo.com

چکیده

در سال­های اخیر، مباحث مرتبط با یادگیری الکترونیک توجه بسیاری از محققان را به خود معطوف نموده است. علیرغم افزایش توجه محققین به مطالعه سیستم­های یادگیری الکترونیک، تمرکز بر روی خروجی­ها و نتایج حاصل از به‌کارگیری این سیستم­ها، کمتر مورد توجه قرار گرفته است. پژوهش حاضر در همین راستا و به‌منظور بررسی تأثیر استفاده از سیستم­های یادگیری الکترونیک بر روی نتایج حاصل از آن تعریف شده است. بدین منظور، 3 خروجی اصلی حاصل از به‌کارگیری سیستم یادگیری الکترونیک شامل پشتیبان یادگیری، ایجاد ارتباط با سایرین (ساختار اجتماعی) و عملکرد آموزشی با لحاظ نمودن نقش تعدیل گر انطباق‌پذیری ادراک‌شده مورد بررسی قرار گرفته است. جامعه آماری این پژوهش شامل دانشجویان دانشگاه مهرالبرز است که در حال حاضر از سیستم یادگیری الکترونیکی استفاده می­نمایند. نتایج حاصل از این پژوهش بیانگر ارتباط مثبت و مستقیم فی‌مابین به‌کارگیری سیستم یادگیری الکترونیک و تمامی خروجی­های حاصل از آن است. همچنین، نقش تعدیل گر عامل انطباق‌پذیری ادراک‌شده در این پژوهش مورد تائید قرار گرفته است.

کلیدواژه‌ها

عنوان مقاله [English]

E-Learning Systems and its Outcomes: The Moderating Role of Perceived Compatibility

نویسندگان [English]

  • Ahad Zare Ravasan 1
  • Masoumeh Amani 2
  • Amir Ashrafi 3

1 Assistant Professor, Faculty member, Mehr Alborz University, Tehran

2 MA, Information Technology Management, Mehr Alborz University, Tehran

3 MA,Information Technology Management, Mehr Alborz University, Tehran (Corresponding Author: a_ashrafy@yahoo.com)

چکیده [English]

In recent years, the topics related to electronic learning have attracted the attention of many scholars. Despite the increasing attention of researchers to the study of electronic learning systems, the focus on outcomes and the results from the use of these systems has been less considered. The present study is designed to investigate the effects of the use of electronic learning systems on its outcomes. To this end, 3 major outcomes from the use of an e-learning system, including learning support, communication with others (social structure), and educational performance, have been investigated, taking into account the mediating role of perceived adaptability. The statistical population of this study is the students of Mehr Alborz University who currently use the electronic learning system. The results of this research indicate a positive and direct relationship between the use of the e-learning system and its outcomes. Also, the mediating role of perceived compatibility factor has been confirmed in this research.

کلیدواژه‌ها [English]

  • Electronic Learning
  • Learning Assistance
  • Social Structure
  • Education Performance
  • Perceived Compatibility
 
حنفی زاده پیام، زارع رواسان احد. (1391). روش تحلیل ساختارهای چند سطحی با استفاده از نرم‌افزار SmartPLS. چاپ اول. نشر ترمه.
Chen, J. L. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computers & Education, 57(2), 1501-1511.
Chin, W. (1998). Issues and opinion on structural equation modeling. Management Information Sys­tems Quarterly, 22(1), 7–16.
Cigdem, H., & Topcu, A. (2015). Predictors of instructors’ behavioral intention to use learning management system: A Turkish vocational college example. Computers in Human Behavior, 52, 22-28.
Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.
Duan, Y., He, Q., Feng, W., Li, D., & Fu, Z. (2010). A study on e-learning take-up intention from an innovation adoption perspective: A case in China. Computers & Education, 55(1), 237-246.
Farid, S., Ahmad, R., Niaz, I. A., Arif, M., Shamshirband, S., & Khattak, M. D. (2015). Identification and prioritization of critical issues for the promotion of e-learning in Pakistan. Computers in Human Behavior, 51, 161-171.
Fornell, C., & Larcker, D. (1981). Evaluating struc­tural equation models with unobservable variables and measurement error. Journal of Marketing Re­search, 18(1), 39–50.
Gefen, D. D., Straub, A. (2005). Practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the AIS. 16. 91–109.
Goodhue, D.L., Thompson, R.L. (1995). Task-technology fit and individual performance. MIS Q. 19 (2), 213–236.
Harrati, N., Bouchrika, I., Tari, A., & Ladjailia, A. (2016). Exploring user satisfaction for e-learning systems via usage-based metrics and system usability scale analysis. Computers in Human Behavior, 61, 463-471.
Hrtoňová, N., Kohout, J., Rohlíková, L., & Zounek, J. (2015). Factors influencing acceptance of e-learning by teachers in the Czech Republic. Computers in Human Behavior, 51, 873-879.
Huber, F., Herrmann, A., Frederik, M., Vogel, J., Vollhardt, K. (2007). Kausalmodellierung mit Partial Least Squares- Eine anwendungsorientierte Einführung. Wiesbaden: Gabler.
Islam, M. T., & Selim, A. S. M. (2006). Current status and prospects for e-learning in the promotion of distance education in Bangladesh. Turkish Online Journal of Distance Education, 7(1).
Islam, A. N. (2013). Investigating e-learning system usage outcomes in the university context. Computers & Education, 69, 387-399.
Islam, A. N. (2016). E-learning system use and its outcomes: Moderating role of perceived compatibility. Telematics and Informatics, 33(1), 48-55.
Karahanna, E., Agarwal, R., & Angst, C. M. (2006). Reconceptualizing compatibility beliefs in technology acceptance research. MIS Quarterly, 30(4), 781-804.
Keramati, A., Afshari-Mofrad, M., & Kamrani, A. (2011). The role of readiness factors in E-learning outcomes: An empirical study. Computers & Education, 57(3), 1919-1929.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.
McGill, T. J., & Klobas, J. E. (2009). A task–technology fit view of learning management system impact. Computers & Education, 52(2), 496-508.
Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: an integration of TAM and IS success model. Computers in Human Behavior, 45, 359-374.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
Ngai, E. W., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & education, 48(2), 250-267.
Ozkan, S., & Koseler, R. (2009). Multi-dimensional students’ evaluation of e-learning systems in the higher education context: An empirical investigation. Computers & Education, 53(4), 1285-1296.
Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.
Sun, Y., Bhattacherjee, A., & Ma, Q. (2009). Extending technology usage to work settings: The role of perceived work compatibility in ERP implementation. Information & Management, 46(6), 351-356.
Wang, W. T., & Wang, C. C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761-774.
Wang, Y. S., Wang, H. Y., & Shee, D. Y. (2007). Measuring e-learning systems success in an organizational context: Scale development and validation. Computers in Human Behavior, 23(4), 1792-1808.
Zhang, X., de Pablos, P. O., Wang, X., Wang, W., Sun, Y., & She, J. (2014). Understanding the users’ continuous adoption of 3D social virtual world in China: A comparative case study. Computers in Human Behavior, 35, 578-585.
Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.