مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‏ آموخته دکتری، مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران.

2 عضو هیئت‌علمی، گروه مهندسی صنایع و سیستم‌ها، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران. (نویسنده مسئول)؛ b.teimourpour@modares.ac.ir

3 دانشجوی دکتری، مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران.

چکیده

 
شناسایی ساختارهای موجود در شبکه‏های اجتماعی، فرآیندی حائز اهمیت در تحلیل این شبکه‏ها است. یکی از مسائلی که در سال‏های اخیر در زمینه شناسایی ساختارهای شبکه‏های اجتماعی مطرح شده است، مسئله اجتماع یابی است. با توجه به اهمیت این موضوع، تاکنون روش‏های حل متنوع و گوناگونی برای اجتماع یابی پیشنهاد شده است. در پژوهش حاضر، یک الگوریتمی ترکیبی از روش‏های بهینه‌سازی علف‌های هرز و ژنتیک پیشنهاد شده است که هدف آن یافتن جواب‏های مناسب و باکیفیت برای مسئله اجتماع یابی است. در این روش ترکیبی، جواب‏های اولیه توسط روش بهینه‌سازی علف‌های هرز تولید می‏شوند و در ادامه جواب‏های یافته شده به‌وسیله الگوریتم ژنتیک در فرآیند بهینه‏سازی، بهبود می‏یابند. ارزیابی برازندگی جواب‏ها، مبتنی بر معیار چگالی پودمانگی است. چگالی پودمانگی، معیاری با ماهیت بیشینه‏سازی است که میزان کیفیت اجتماعات کشف‌شده را به دست می‏دهدمشخص می کند. به‌منظور بررسی کیفیت جواب‏های الگوریتم پیشنهادی، نتایج این روش نسبت به چهار الگوریتم علف‌های هرز، ژنتیک، الگوریتم کرم شب‌تاب و یک الگوریتم جستجوی کاملاً تصادفی مقایسه شده‏اند. پارامترهای این الگوریتم‏ها به کمک یک رویکرد طراحی آزمایش‌ها تنظیم شده‏اند. این مقایسات بر روی شبکه‏های محک گوناگون و با ابعاد متفاوت انجام شده‏اند. با توجه به نتایج به‌دست‌آمده، می‏توان دریافت که الگوریتم پیشنهادی قادر به تولید جواب‏هایی باکیفیت بالا است. اعتبارسنجی نتایج الگوریتم‏ها نیز توسط شاخص اطلاعات متقابل نرمال انجام شده است.
 

کلیدواژه‌ها

عنوان مقاله [English]

A Hybrid Algorithm for Detecting Communities of Social Networks based on the Modularity Density Criterion

نویسندگان [English]

  • Amir Hossein Hosseinian 1
  • Babak Teimourpour 2
  • Bagher Jamali Hondori 3

1 Ph.D., Industrial Engineering, Faculty of Engineering, Islamic Azad University, Tehran North Branch, Tehran.

2 Faculty Member, Department of Industrial and Systems Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran (Corresponding Author: b.teimourpour@modares.ac.ir )

3 Ph.D. Candidate, Industrial Engineering, Faculty of Engineering, Islamic Azad University, Tehran North Branch, Tehran.

چکیده [English]

 
Detecting existing communities in social networks is a significant process in analyzing these networks. In recent years, the community detection problem has become popular for detecting structures of social networks. Due to high importance of this problem, various algorithms have been developed in the literature to find communities of complex networks. In this research, a hybrid meta-heuristic consisting of the genetic algorithm (GA) and the invasive weed optimization (IWO) method have been proposed which aims to find appropriate and high quality solutions for the community detection problem. In this hybrid method, the initial solutions are generated via the IWO algorithm, and thereafter the optimization process is continued by means of the genetic algorithm. The proposed algorithm is known as the GAIWO. Fitness of solutions is determined in terms of the modularity density criterion. Modularity density has a maximization essence and determines the quality of detected communities. To evaluate the efficiency of the GAIWO, four other methods have been employed and their results have been compared. Comparisons have been made on several networks with different sizes. Input parameters of all algorithms have been tuned by a design of experiments approach. The outputs indicate appropriate efficiency of the proposed algorithm. Validation of the results have been investigated by means of the Normalized Mutual Information (NMI) metric.

کلیدواژه‌ها [English]

  • Community detection
  • Soft computing
  • Invasive weed optimization
  • Modularity density
 
بخشی، م.؛ سمیع‌زاده، ر. (1396)، مدلی برای پذیرش بانکداری الکترونیکی با در نظر گرفتن عامل اعتماد مشتریان، مطالعاتمدیریت کسب‌وکار هوشمند، دوره 5، شماره 19، بهار 1396، صفحه 53-74.
برادران، و.؛ حسینیان، الف. ح.؛ درخشانی، ر. (1397-الف)، ارائه روش فرا ابتکاری مبتنی بر تصمیم‏گیری چندمعیاره در حل مسئله اجتماع یابی، مدیریت فناوری اطلاعات، دوره 10، شماره 2، تابستان 97، صفحه 283-308.
برادران، و.؛ حسینیان، الف. ح.؛ درخشانی، ر.؛ نیک‏ضمیر، م. (1397-ب)، ارائه یک رویکرد جدید برای حل مسئله اجتماع یابی شبکه‏های اجتماعی با توسعه الگوریتم‏های NSGA-II و NRGA، مهندسی صنایع و مدیریت شریف، دوره 1، شماره 2/1، تابستان 97، صفحات 101-115.
جعفری، م.ب.؛ کریمی، الف.؛ ابرقوی‌زاده، ز. (1395)، عوامل تأثیرگذار بر تمایل به ادامه استفاده از وب‌سایت شبکه‏های اجتماعی، مطالعاتمدیریت کسب‌وکار هوشمند، دوره 5، شماره 17، پاییز 1395، صفحه 147-182.
روشنی، س.؛ رضایی نیک، ن.؛ شجاعی، م.ح. (1392)، مطالعه مقایسه‌ای قابلیت سازی و جامعه‌پذیری شبکه‌های اجتماعی عمومی و تخصصی، مطالعاتمدیریت کسب‌وکار هوشمند، دوره 2، شماره 5، تابستان 1392، صفحه 97-132.
سپهردوست، ح.؛ صدری، ل. (1396)، اثر فناوری اطلاعات و ارتباطات بر رشد بازار سرمایه؛ شواهد تجربی از بورس اوراق بهادار تهران، مطالعاتمدیریت کسب‌وکار هوشمند، دوره 5، شماره 19، بهار 1396، صفحه 1-28.
Bingol, H. & Tasgin, M. (2006). Community detection in complex networks using genetic algorithms. Advances in Complex Systems, 11(4), 1-6.
Brandes, U., Delling, D. & Gaetler, M. (2008). On Modularity Clustering. Transactions on Knowledge and Data Engineering, 20(2), 172-188.
Chen, M., Kuzmin, K., Boleslaw, K., & Szymanski, F. (2014). Community Detection via Maximization of Modularity and Its Variants. Trans. Computation Social System, 1(1), 46-65.
Choudhury, D. & Paul, A. (2013). Community Detection in Social Networks: An Overview. International Journal of Research in Engineering and Technology, 2(2), 6-13.
Fortunato, S. & Barthelemy, M. (2007). Resolution limit in community detection. PNAS, 104(1), 36-41.
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 1–100.
Ghorbanian, A. & Shaqaqi, B. (2015). A Genetic Algorithm for Modularity Density Optimization in Community Detection. International Journal of Economy, Management and Social Sciences, 4(1), 117-122.
Gleiser, P. & Danon, L. (2003). Community Structure in Jazz. Advances in Complex Systems, 6(4), 565-573.
Guesmi, S., Trabelsi, C., & Latiri, C., (2016). Community detection in multi-relational bibliographic networks, Database and Expert Systems Applications, vol. 9828 of Lecture Notes in Computer Science, 11–18, Springer International Publishing, Cham, Switzerland, 2016. 
Guimera, R. & Amaral, L. (2005). Functional Cartography of Complex Metabolic Networks. Nature, 433(2), 895-900.
Guoqiang, C. & Xiaofang, G. (2010). A Genetic Algorithm Based on Modularity Density for Detecting Community Structure in Complex Networks. Computational Intelligence and Security, 20(4), 151-154.
Griechisch, E. & Pluhar, A. (2011). Community Detection by using the Extended Modularity. Acta Cybernetica, 20(1), 69-85.
Hafez, A., Ghali, N., Hassanien, A. & Fahmy, A. (2012). Genetic Algorithms for community detection in social networks. Intelligent Systems Design and Applications, 10(2), 460-465.
Hosseinian, A.H., & Baradaran, V. (2018). A multi-objective multi-agent optimization algorithm for the community detection problem. Journal of Information Systems and Telecommunication, 6(3), 166-176.
Li, Z., Pan, Z., Zhang, Y., Li, G., & Hu, G., (2016). Efficient Community Detection in Heterogeneous Social Networks, Mathematical Problems in Engineering, Volume 2016, http://dx.doi.org/10.1155/2016/5750645.
Mahmood, A., & Small, M., (2016). Subspace based network community detection using sparse linear coding, IEEE Transactions on Knowledge & Data Engineering, 28(3), 801–812.
Mehrabian, A. & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1(4), 355-366.
Miller, B. & Goldberg, D. (1995). Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems, 9(1), 193-212.
 Newman, M. & Girvan, M. (2004). Finding and evaluating community structure in networks. Phys. Rev, 69(2), 22-38.
Newman, M. (2006). Finding community structure in networks using the eigenvectors of matrices. Phys. Rev, 1(3), 12-34.
Peel, L., Larremore, D.B., & Clauset, A., (2017). The ground truth about mega-data and community detection in networks, Science Advances, 3(5), 1-8, DOI: 10.1126/sciadv.1602548.
Pizzuti, C. (2008). GA-Net: A Genetic Algorithm for Community Detection in Social Networks. Computer Science, 5199(1), 1081-1090.
Shaqaqi, B., Teimourpour, B. & Ghorbanian, A. (January, 2015). A new heuristic algorithm for modularity optimization in complex networks community detection. Proceedings of 11th Industrial Engineering Conference, Tehran, Iran.
Shaqaqi, B. (2014). A Mathematical Programming Model based on modularity density for community detection. M.Sc dissertation, Tarbiat Modares University, Faculty of Engineering.
Shi, C., Yan, Z., Wang, Y., Cai, Y. & Wu, B. (2010). A Genetic Algorithm for Detecting Communities in Largescale Complex Networks. Advance in Complex System, 13(1), 3-17.
Shi, C., Yan, Z., Cai, Y. & Wu, B. (2012). Multi-objective community detection in complex networks. Applied Soft Computing, 12(2), 850-859.
Win, H.N., & Lynn, K.T. (2017). Community detection in Facebook with outlier recognition. 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Kanazawa, Japan.
Zhang, H., Qiut, B., Giles, L., Foley, H. & Yen, J. (2007). An LDA-based Community Structure Discovery.Intelligence and Security Informatics, 400(2), 200-207.
Zhang, S. & Li, Z. (2008). Quantitative function for community detection. Physical Review, 77(3), 036109.
Zhang, W., Pan, G., Wu, Z., & Li., S. (2014). Online Community Detection for Large Complex Networks. PLoS ONE, 9(7), 168-188.