مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری اطلاعات، دانشکده مدیریت، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران.

2 عضو هیئت علمی، گروه مدیریت، دانشکده مدیریت، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران. (نویسنده مسئول)؛ pres@qiau.ac.ir

3 عضو هیئت علمی، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران.

4 عضو هیئت علمی، گروه مدیریت بازرگانی، دانشکده مدیریت دانشگاه تهران، تهران.

5 عضو هیئت علمی، گروه مدیریت تکنولوژی، دانشکده مدیریت، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران.

چکیده

ارائه­ خدمات مالی در پلتفرم­های مبتنی بر زنجیره بلوکی به‌عنوان رویکردی نوین در بازارهای مالی، فضای وسیعی برای رشد دارد. این موضوع، لزوم مطالعه و شناسایی پیشران­های نگرش کاربران نسبت ­به استفاده از خدمات مالی مبتنی بر زنجیره­ بلوکی را نشان می­دهد. به این منظور، از مدل‌های پذیرش فناوری استفاده شده است. این پژوهش، با استفاده از ترکیب چند مدل پذیرش فناوری، مطالعه پیشران­های مؤثر بر تمایل مشتریان به استفاده از خدمات مالی در پلتفرم­های مبتنی بر زنجیره بلوکی را مورد هدف قرار داده است تا مشخص شود که چه عواملی منجر به ترغیب کاربران در استفاده از خدمات مالی در پلتفرم­های مبتنی بر زنجیره بلوکی می‌شود. به این منظور، ابتدا با مطالعه ادبیات، به استخراج عوامل مؤثر بر قصد رفتاری مشتریان به استفاده از خدمات مالی در پلتفرم­های مبتنی بر زنجیره بلوکی پرداخته ‌شده و بر مبنای آن‌ها مدل معادلات ساختاری شکل گرفته است. نتایج تجزیه­و­تحلیل داده­ها نشان داد که گرایش فردی به اعتماد و ضمانت­های ساختاری به‌طور مستقیم بر اعتماد اولیه تأثیرگذار هستند و اعتماد اولیه کاربران نیز بر قصد رفتاری کاربران مؤثر است. از سوی دیگر ویژگی­های فناورانه و ویژگی­های وظیفه­ای به‌طور مستقیم بر تناسب فناورانه-وظیفه­ای مؤثر هستند و تناسب فناورانه- وظیفه­ای بربر قصد رفتاری کاربران تأثیر می‌گذارد. همچنین انتظار عملکرد به‌طور مستقیم بر قصد رفتاری کاربران تأثیرگذار است. همچنین، نتایج این پژوهش نشان داد که تمایل به استفاده از خدمات مالی در پلتفرم­های مبتنی بر زنجیره بلوکی برخاسته از یک نیاز اجتماعی است و حتی با وجود برخی محدودیت­های زنجیره بلوکی کاربران مشتاق نسبت به استفاده از خدمات مالی مبتنی بر این فناوری هستند.
 

کلیدواژه‌ها

عنوان مقاله [English]

Drivers Affecting the Users' Attitudes Towards Using Financial Services in Blockchain-Based Platforms

نویسندگان [English]

  • Hamed Heidari 1
  • Morteza Mousakhani 2
  • Mahmood Alborzi 3
  • Ali Divandari 4
  • Reza Radfar 5

1  Ph.D. Student, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran

2 Faculty Member, Department of Management, Science and Research Branch, Islamic Azad University, Tehran.(Corresponding Author: pres@qiau.ac.ir)

3  Faculty Membe, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran.

4 Faculty Member, Department of Management Faculty of Management, University of Tehran, Tehran

5 Faculty Member, Department of Technology Management, Science and Research Branch, Islamic Azad University, Tehran.

چکیده [English]

 


Research Article
 
 
Hamed Heidari*
Morteza Mousakhani**
 
 
Abstract:
Providing financial services on Blockchain-based platforms as a new approach to financial markets has a lot of room for growth. This demonstrates the need to study and identify the drivers of users' attitudes towards using Blockchain-based financial services. For this purpose, technology adoption models have been used. Using a combination of several technology adoption models, this research aims to study the factors affecting customers' intention to use financial services in Blockchain-based platforms to determine what factors drive users to use them. For this purpose, first, the literature was studied and a conceptual framework was extracted, and in accordance with the model, a structural equation model has been developed.
The results have shown that the individual tendency to trust and also structural guarantees, directly affect initial trust and in the following users’ initial trust influences users' behavioral intentions. In addition, technological features and task characteristics, directly influence technology-task fit and technology-task fit affects users' behavioral intention. Furthermore, expecting performance directly affects the behavioral intention of users.
This study has concluded that the propensity to use financial services in Blockchain-based platforms is under the influence of social needs and even Blockchain constraints cannot reduce the desire to use financial services based on this technology.



* Ph.D. Student, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.


** Faculty Member, Department of Management, Science and Research Branch, Islamic Azad University, Tehran (Corresponding Author: pres@qiau.ac.ir) , Iran.


*** Faculty Member, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.


**** Faculty Member, Department of Management Faculty of Management, University of Tehran, Tehran, Iran.


****** Faculty Member, Department of Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Received: July 16, 2019                                                                    Accepted: January 20, 2020
Research Article
 
Drivers affecting the users' attitudes towards using financial Services in Blockchain-Based Platforms
 
Hamed Heidari*
Morteza Mousakhani**
Mahmood Alborzi***
Ali Divandari   ****
Reza Radfar******
 
Abstract:
Providing financial services on Blockchain-based platforms as a new approach to financial markets has a lot of room for growth. This demonstrates the need to study and identify the drivers of users' attitudes towards using Blockchain-based financial services. For this purpose, technology adoption models have been used. Using a combination of several technology adoption models, this research aims to study the factors affecting customers' intention to use financial services in Blockchain-based platforms to determine what factors drive users to use them. For this purpose, first, the literature was studied and a conceptual framework was extracted, and in accordance with the model, a structural equation model has been developed.
The results have shown that the individual tendency to trust and also structural guarantees, directly affect initial trust and in the following users’ initial trust influences users' behavioral intentions. In addition, technological features and task characteristics, directly influence technology-task fit and technology-task fit affects users' behavioral intention. Furthermore, expecting performance directly affects the behavioral intention of users.
This study has concluded that the propensity to use financial services in Blockchain-based platforms is under the influence of social needs and even Blockchain constraints cannot reduce the desire to use financial services based on this technology.



* Ph.D. Student, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.


** Faculty Member, Department of Management, Science and Research Branch, Islamic Azad University, Tehran (Corresponding Author: pres@qiau.ac.ir) , Iran.


*** Faculty Member, Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.


**** Faculty Member, Department of Management Faculty of Management, University of Tehran, Tehran, Iran.


****** Faculty Member, Department of Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Received: July 16, 2019                                                                    Accepted: January 20, 2020

کلیدواژه‌ها [English]

  • Blockchain
  • Personal Propensity to Trust
  • Structural Assurances Beliefs
  • Task Characteristics
  • Task-Technology Fit
  • Performance Expectancy
منابع
Ahram, T., Sargolzaei, A., Sargolzaei, S., Daniels, J., & Amaba, B. (2017). Blockchain technology innovations. Paper presented at the Technology & Engineering Management Conference (TEMSCON), IEEE.
Angraal, S., Krumholz, H. M., & Schulz, W. L. (2017). Blockchain technology: applications in health care. Circulation: Cardiovascular Quality and Outcomes, 10(9), e003800.
Bahga, A., & Madisetti, V. K. (2016). Blockchain platform for industrial internet of things. Journal of Software Engineering and Applications, 9(10), 533.
Bigley, G. A., & Pearce, J. L. (1998). Straining for shared meaning in organization science: Problems of trust and distrust. Academy of Management Review, 23(3), 405-421.
Biswas, K., & Muthukkumarasamy, V. (2016). Securing smart cities using blockchain technology. Paper presented at the High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference on.
Churchill J., & Gilbert, A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 64-73.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
De Filippi, P. D. F. (2018). Blockchain and the law: The rule of code. Harvard University Press.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & Management, 36(1), 9-21.
Farell, R. (2015). An analysis of the crypto currency industry.
Feld, B., & Wise, S. (2017). Startup Opportunities: Know when to Quit Your Day Job: John Wiley & Sons.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 39-50.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 213-236.
Group, B. (2015). Proof of Stake versus Proof of Work White Paper. http://bitfury.com/content/5-white-papers-research/pos-vs-pow-1.0.2.pdf.
Guo, Y., & Liang, C. (2016). Blockchain application and outlook in the banking industry. Financial Innovation, 2(1), 24.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
Heidari, H., Mousakhani, M., & Rashidi, H. (2014). The Analysis of the Factors Affecting Iranian Customers' Satisfaction in Traditional and Internet Banking-Case Study: Saman Bank. International Journal of Scientific Management and Development, 2(4), 1-6.
Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565-580.
Hong, W., Thong, J. Y.L., Chasalow, L. C., & Dhillon, G. (2011). User acceptance of agile information systems: A model and empirical test. Journal of Management Information Systems, 28(1), 235-272.
Hou, H. (2017). The application of blockchain technology in E-government in China. Paper presented at the Computer Communication and Networks (ICCCN), 2017 26th International Conference on.
Kim, G., Shin, B., & Lee, H. G. (2009). Understanding dynamics between initial trust and usage intentions of mobile banking. Information Systems Journal, 19(3), 283-311.
Kim, K. K., & Prabhakar, B. (2004). Initial trust and the adoption of B2C e-commerce: The case of internet banking. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 35(2), 50-64.
Klopping, I. M, & McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information Technology, Learning & Performance Journal, 22(1).
Konashevych, O. (2017). The concept of the blockchain-based governing: Current issues and general vision. Paper presented at the The Proceedings of 17th European Conference on Digital Government ECDG 2017.
Koufaris, M., & Hampton-Sosa, W. (2004). The development of initial trust in an online company by new customers. Information & Management, 41(3), 377-397.
Kuo, T. T., Zavaleta Rojas, H., & Ohno-Machado, L. (2019). Comparison of blockchain platforms: a systematic review and healthcare examples. Journal of the American Medical Informatics Association, 26(5), 462-478.
Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task–tecnology fit and individual differences. Decision Support Systems, 43(1), 95-110.
Lee, M. K., & Turban, E. (2001). A trust model for consumer internet shopping. International Journal of Electronic Commerce, 6(1), 75-91.
Lewis, A., Larsen, M., & Goh, C. Y. (2016). Understanding Blockchain Technology And What It Means for Your Business. Asian Insights Office• DBS Group Research Google Scholar.
Lewis, A. (2015). A gentle introduction to blockchain technology. Bits on Blocks.
Lowry, P. B., Vance, A., Moody, G., Beckman, B., & Read, A. (2008). Explaining and predicting the impact of branding alliances and web site quality on initial consumer trust of e-commerce web sites. Journal of Management Information Systems, 24(4), 199-224.
Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222-234.
Mallat, N., Rossi, M., & Tuunainen, V. K. (2004). Mobile banking services. Communications of the ACM, 47(5), 42-46.
Marsal-Llacuna, Maria-Lluïsa. (2018). Future living framework: Is blockchain the next enabling network? Technological Forecasting and Social Change, 128, 226-234.
Martins, C., Oliveira, T., & Popovic, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1-13.
McKnight, D. H., & Chervany, N. L. (2001). What trust means in e-commerce customer relationships: An interdisciplinary conceptual typology. International Journal of Electronic Commerce, 6(2), 35-59.
McKnight, D. H., & Chervany, N. L. (2006). Reflections on an initial trust-building model. Handbook of Trust Research, 29-51.
Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems (TMIS), 2(2), 12.
McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, 13(3), 334-359.
McWaters, R. J., Bruno, G., Galaski, R., & Chaterjee, S. (2016). The future of financial infrastructure: An ambitious look at how blockchain can reshape financial services. In World Economic Forum. 49, 368-376.
Miltgen, C. L., Popovic, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114.
Mithas, S., Tafti, A., Bardhan, I., & Goh, J. M. (2012). Information technology and firm profitability: mechanisms and empirical evidence. Mis Quarterly, 205-224.
Morabito, V. (2017). Business Innovation Through Blockchain. Cham: Springer International Publishing.
Mougayar, W. (2016). The business blockchain: promise, practice, and application of the next Internet technology: John Wiley & Sons.
Nguyen, Q. K. (2016). Blockchain-a financial technology for future sustainable development. Paper presented at the Green Technology and Sustainable Development (GTSD), International Conference on.
Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain. Business & Information Systems Engineering, 59(3), 183-187.
Oh, J., & Shong, I. (2017). A case study on business model innovations using Blockchain: focusing on financial institutions. Asia Pacific Journal of Innovation and Entrepreneurship, 11(3), 335-344.
Oliveira, Tiago, Faria, Miguel, Thomas, Manoj Abraham, & Popovic, Ales. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703.
Ølnes, S., & Jansen, A. (2017). Blockchain Technology as s Support Infrastructure in e-Government. Paper presented at the International Conference on Electronic Government.
Ølnes, S., Ubacht, J., & Janssen, M. (2017). Blockchain in government: Benefits and implications of distributed ledger technology for information sharing: Elsevier.
Ølnes, S. (2016). Beyond bitcoin enabling smart government using blockchain technology. Paper presented at the International Conference on Electronic Government and the Information Systems Perspective.
Rahman, I. A., Nagapan, S., & Asmi, A. (2014). Initial PLS model of construction waste factors. Procedia-social and Behavioral Sciences, 129, 469-474.
Ratnasingham, P. (1998). The importance of trust in electronic commerce. Internet Research, 8(4), 313-321.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G, Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478.
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. MIS Quarterly, 26, 186-193.
Wijaya, D. A., Liu, J. K., Suwarsono, D. A., & Zhang, P. (2017). A New Blockchain-Based Value-Added Tax System. Paper presented at the International Conference on Provable Security.
Wunderlich, P., Größler, A., Zimmermann, N., & Vennix, J. A. M. (2014). Managerial influence on the diffusion of innovations within intra‐organizational networks. System Dynamics Review, 30(3), 161-185.
Wyman, O. (2015). The Fintech 2.0 Paper: rebooting financial services. Oliver Wyman Anthemis Group, and Santander Innoventures.
Yoo, S. (2017). Blockchain based financial case analysis and its implications. Asia Pacific Journal of Innovation and Entrepreneurship, 11(3), 312-321.
Yoo, Y., Boland J., Richard J., Lyytinen, K., & Majchrzak, A. (2012). Organizing for innovation in the digitized world. Organization Science, 23(5), 1398-1408.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.