مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مدیریت، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

2 دانشیار ، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.(نویسنده مسئول)؛ imanraeesi@atu.ac.ir

3 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

چکیده

ارزیابی عملکرد آموزشی از طریق شناسایی و تحلیل داده‌های حاصل از فعالیت‌های یادگیرندگان، می‌تواند به بهبود مؤثر عملکرد آموزشی منجر گردد. در پژوهش حاضر، داده‌های مربوط به دانش پذیران بین‌المللی، بر اساس روش تحقیق علم طراحی و با استفاده از روش‌های داده‌کاوی مورد بررسی قرار گرفته است. در این راستا تحقیقات انجام‌گرفته داخلی و بین‌المللی در دهه گذشته بررسی و مرور شده است و داده‌های تحصیلی و غیر تحصیلی یادگیرندگان در سه دسته خانوادگی، حمایتی و رفتار تحصیلی با استفاده از داده‌کاوی، خوشه‌بندی شده است. پس از اعتبارسنجی خروجی الگوریتم‌ها توسط شاخص‌های مرتبط و تعیین تعداد خوشه بهینه در هر بخش، خوشه‌ها نام‌گذاری و تحلیل شدند. تحلیل خوشه‌های شناسایی‌شده، نشان‌دهنده تجربه موفقیت یا شکست تحصیلی دانش پذیران و ریشه‌های عملکرد مؤثر در هر بخش است و روش نام‌گذاری ارائه‌شده، روشی نوین و قابل‌استفاده در اغلب مراکز آموزشی جهت تفکیک و تبیین عملکرد آموزشی است.
 
 
 

کلیدواژه‌ها

عنوان مقاله [English]

A Model for Learners Segmentation and Educational Performance Improvement Using Data Mining Algorithms

نویسندگان [English]

  • Sina Raeesi Vanani 1
  • Iman Raeesi Vanani 2
  • Mohammad Taghi Taghavifard 3

1 M.Sc., Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran. Iran

2  Faculty Member, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran. Iran(Corresponding Author: imanraeesi@atu.ac.ir)

3 Faculty Member, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran Iran

چکیده [English]

Educational performance measurement through the identification and analysis of data extracted from learners’ activities can effectively result in the improvement of educational performance. In this Article, data of international learners was analyzed based on design science methodology and using data mining methods. In this regard, domestic and international research has been reviewed over the past decade and the academic and non-academic data of students were clustered into three categories: family, supportive, and academic behavior. After the validation of algorithms outputs and determining the number of optimal clusters in each category, clusters were labeled and analyzed. Analysis of labels presents the experience of success or failure of students and roots of effective performance in each cluster, and the labeling method proposed is a new and applicable method in most of the learning centers for segmenting and formulating the educational performance.

کلیدواژه‌ها [English]

  • : Learning
  • Educational Performance
  • Data Mining
  • Clustering
دی پیر، محمود و رابو، احمد. (1397). استفاده از داده کاوی آموزشی جهت گروه‌بندی یادگیرندگان در محیط یادگیری الکترونیکی به‌منظور شخصی‌سازی برنامه آموزش. مدیریت و برنامه‌ریزی در نظام‌های آموزشی، 11(1).108-83.
رضائی، عباسعلی و زاهدی، محمدهادی. (1397). نقش فن‌آوری‌های نوین در پیشرفت آموزش‌های الکترونیکی (با نگاهی به فرصت‌ها و چالش‌های پیش رو در دانشگاه‌ها و مراکز آموزش عالی داخل). نشریه پژوهش در نظام‌های آموزشی،12(40).224-207.
امین بیدختی علی‌اکبر، فتحیان بروجنی، محمد و نامنی، احمد. (1396). مدلی برای پیش‌بینی آسیب‌پذیری تحصیلی مقطع کارشناسی مبتنی بر شبکه عصبی. مدیریت و برنامه ریزی در نظام های آموزشی،10(1)، 102-81.
زاهدبابلان، ع.؛ معینی کیا، م؛ و درخشانفرد، س. (1395). نقش آموزش الکترونیکی در نظام آموزش عالی و چالش‌های پیش روی آن، اولین کنفرانس بین‌المللی پژوهش‌های نوین در حوزه علوم تربیتی و روانشناسی و مطالعات اجتماعی ایران، قم، دبیرخانه دائمی کنفرانس، موسسه بین‌المللی مطالعات و توسعه علم خاورمیانه.
امیر تیموری، محمدحسن و زارع، محمد. (1394). بارشناختی و چندرسانه‌ای آموزشی، دانشگاه علامه طباطبایی.
مقصودی بهروز؛ سلیمانی، صادق؛ امیری، علی و افشارچی، محسن. (1391). ارتقای کیفیت آموزش در سامانه‌های آموزش الکترونیکی با استفاده از داده کاوی آموزشی. فناوری آموزش، 6(4)، 286-227.
نریمی سایی، ژاله و شادگار، بیتا. (1390). کاربرد تکنیک‌های داده‌کاوی در محیط‌های آموزش الکترونیکی. مطالعات کتابداری و علم اطلاعات.18(7)، 3-1.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational Data Mining and Learning Analytics for 21stcentury higher education: A Review and Synthesis. Telematics and Informatics. 37,  13-49.
Hernández-Lara, A. B., Perera-Lluna, A., & Serradell-López, E. (2019). Applying learning analytics to students’ interaction in business simulation games. The usefulness of learning analytics to know what students really learn. Computers in Human Behavior, 92, 600-612.‏
Nistor, N., & Hernández-Garcíac, Á. (2018). What types of data are used in learning analytics? An overview of six cases. Computers in Human Behavior, 89, 335-338.‏
 Schumacher, C., & Ifenthaler, D. (2018). Features students really expect from learning analytics. Computers in Human Behavior, 78, 397-407.‏
Vieira, C., Parsons, P., & Byrd, V. (2018). Visual learning analytics of educational data: A systematic literature review and research agenda. Computers & Education, 122, 119-135.‏
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194.‏
Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student academic performance prediction model using decision tree and fuzzy genetic algorithm. Procedia Technology, 25, 326-332.
Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students in a course using standards-based grading. Computers & Education, 103, 1-15.‏
Shahiri, A.M., & Husain, W. (2015). A review on predicting student's performance using data mining techniques. Procedia Computer Science, 72, 414-422.‏
Brown, S. J., White, S., & Power, N. (2015). Tracking undergraduate student achievement in a first-year physiology course using a cluster analysis approach. Advances in physiology education, 39(4), 278-282.
Cambruzzi, W. L., Rigo, S. J., & Barbosa, J. L. (2015). Dropout Prediction and Reduction in Distance Education Courses with the Learning Analytics Multitrail Approach. J. UCS, 21(1), 23-47.
Caputi, V., & Garrido, A. (2015). Student-oriented planning of e-learning contents for Moodle. Journal of Network and Computer Applications, 53, 115-127.
Campagni, R., Merlini, D., & Verri, M. C. (2014, April). An Analysis of Courses Evaluation Through Clustering. In International Conference on Computer Supported Education (pp. 211-224).
He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102.
Van Barneveld, A., Arnold, K. E., & Campbell, J. P. (2012). Analytics in higher education: Establishing a common language. EDUCAUSE learning initiative, 1(1), l-ll.
Ferguson, R., & Shum, S. B. (2012, April). Social learning analytics: five approaches. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 23-33). ACM.
Hevner, A., & Chatterjee, S. (2010). Design science research in information systems. In Design research in information systems (pp. 9-22). Springer, Boston, MA.‏
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Chen, C. M., & Chen, M. C. (2009). Mobile formative assessment tool based on data mining techniques for supporting web-based learning. Computers & Education, 52(1), 256-273.
Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert systems with applications, 33(1), 135-146.
Retalis, S., Papasalouros, A., Psaromiligkos, Y., Siscos, S., & Kargidis, T. (2006). Towards networked learning analytics–A concept and a tool. In Proceedings of the fifth international conference on networked learning, (pp. 1-8).