مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مدیریت بازرگانی، واحد قم، دانشگاه آزاد اسلامی، قم، ایران

2 دانشیار، گروه مدیریت بازرگانی، دانشگاه آزاد اسلامی، واحد اراک، اراک، ایران (نویسنده مسئول)؛ p-ghafari@iau-arak.ac.ir

3 استادیار، گروه مدیریت دولتی، پردیس فارابی، دانشگاه تهران، قم، ایران

4 استادیار، گروه مدیریت بازرگانی، دانشگاه آزاد اسلامی، واحد قم، قم، ایران

چکیده

تبلیغات یکی از مهم‌ترین اجزای ناپایدار یک نهاد تجاری است و توسعه و پیشرفت فنّاورانه به‌ویژه رسانه­های اجتماعی آنلاین، فشار و تأثیر تبلیغات را بانفوذتر و قدرتمندتر کرده است. این در حالی است که فریب یکی از معضلات اخلاقی مهم در تبلیغات به‌حساب می­آید و که با رشد شبکه­های اجتماعی، گسترش یافته است و باعث ایجاد آسیب­هایی به مصرف‌کننده می­گردد. با توجه به این مهم، هدف از پژوهش حاضر، ارائه مدلی در مورد عوامل مؤثر بر فریب درک شده تبلیغات در شبکه‌های اجتماعی آنلاین است. برای تحقق این هدف، از رویکرد مدل­سازی ساختاری- تفسیری و نرم‌افزارهای متلب و میک مک استفاده شده است. جامعه آماری پژوهش را اساتید دانشگاهی و خبرگان حوزه بازاریابی و تبلیغات در حوزه رسانه­های اجتماعی تشکیل داده­اند. نتایج نشان داد عامل ویژگی تبلیغات شبکه‌های اجتماعی در ارتباط با موضوع پژوهش و ارائه مدل فریب ادراک­شده تبلیغات شبکه­های اجتماعی از اثرگذاری بیشتری برخوردار است و در مقابل عامل­های سودمندی ادراک­شده، دانش مشتری، اعتماد ادراک­شده، نگرش مشتری، ویژگی­های مشتری و ویژگی‌های رسانه دارای بیش‌ترین تأثیرپذیری و کمترین تأثیرگذاری در مدل ارائه شده، هستند. همچنین، نتایج نشان می‌دهد عامل اول؛ یعنی ویژگی­های تبلیغات شبکه­های اجتماعی چون دارای قدرت هدایت­کنندگی زیاد؛ ولی وابستگی کم است، جزو متغیرهای نفوذی یا به‌عبارت‌دیگر محرک به شمار می‌آید و سایر عامل­ها نیز دارای قدرت هدایت زیاد و وابستگی زیاد هستند. این متغیرها غیر ایستا بوده و در دسته متغیرهای پیوندی قرار­گرفته‌اند.
 

کلیدواژه‌ها

عنوان مقاله [English]

Modeling Factors Affecting Perceived Deception of Advertising in Social Networks with a Structural-Interpretive Approach

نویسندگان [English]

  • Soraya Bakhtiari bastaki, 1
  • Peyman Ghafari ashtiani, 2
  • Ali Hamidizadeh, 3
  • Rasoul Sanavi Fard, 4

1 Department of Business management, Qom Branch, Islamic Azad University, Qom, Iran

2 Department of Business Management, Faculty of Management, Islamic Azad University, Arak. Iran (Corresponding Author: p-ghafari@iau-arak.ac.ir).

3 Assistant Professor, Department of Public Management, Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran.

4 Assistant Professor, Department of Business Management, Faculty of Humanity, Qom Branch, Islamic Azad University, Qom, Iran

چکیده [English]

he present research aimed at developing a model for perceived social media advertising deception. To attain the aim, the interpretive structural modeling approach was employed. The research sample included all of the lecturers and experts of social media marketing and advertisement field selected by the purposeful sampling method. Eventually, eight lecturers and experts of social media marketing and advertisement answered the considered questions. The selected experts had at least ten years of experience in studying, teaching, or working in the field of social media. The sampling continued up to the theoretical saturation point. To determine the reliability of the measurement instrument, the ICC value was confirmed in terms of its consistency and absolute agreement. The research results indicated that in relation to the research subject and the proposed model for perceived social media advertising deception, social media advertising attributes had the strongest effect, while the perceived usefulness, customer knowledge, perceived trust, customer attitude, customer attributes, and media attributes were mostly affected by and their own effects were trivial. In addition, the results revealed that the primary factor in the research i.e. social media advertising attributes, was among the influential or driving variables due to its high directional power and low dependency. Other factors were described with high directional power and high dependency. The variables were non-static and so classified as the hybrid variables.

کلیدواژه‌ها [English]

  • Interpretive structural modeling
  • Perceived deception
  • Social media advertising
افراسیابی، مینا؛ مشبکی، اصغر و منصوری، فرشته. (1397). بررسی تأثیر استفاده از تبلیغات پنهان بر قصد خرید مشتریان مبتنی بر نقش تعدیل گری متغیر جمعیت شناختی جنسیت و متغیر شهرت برند، راهبردهای بازرگانی، 25(11)، 103-86.
تقوی، هادی؛ جعفری، محمدباقر و موسوی ثانی باغسیاهی، مرتضی. (1396). تأثیر عوامل عاطفی و شناختی بر نگرش و پذیرش تبلیغات از طریق تلفن همراه. تحقیقات بازاریابی نوین، 7(2)، 192-167.
دعائی، فرهاد.(1397). بررسی تأثیر تبلیغات اینترنتی بر قصد خرید اینترنتی به واسطه آگاهی از برند (مورد مطالعه: مشتریان محصولات زیبایی در شهر دامغان). پایان‌نامه کارشناسی ارشد مؤسسه آموزش عالی حکمت رضوی.
رحمانی، فاطمه و فقیه، نظام‌الدین. (1394). الگویی جهت تبلیغات اینترنتی موفق به‌منظور جذب مشتریان الکترونیک بیشتر (با محوریت اخلاقیات). رسانه و فرهنگ، 5(1)، 56-37.
سعیدنیا، حمیدرضا و قربان زاده، داوود. (1396). بررسی عوامل مؤثر بر نگرش و تبلیغات شفاهی مثبت در بین کاربران تلگرام. تحقیقات بازاریابی نوین، 7(1)، 202-173.
صمدی، ه. (1397). بررسی تأثیر اعتیاد به شبکه‌های اجتماعی بر تغییر نگرش به تبلیغات در شبکه‌های اجتماعی با نقش میانجی اعتماد. پایان‌نامه کارشناسی ارشد دانشگاه محقق اردبیلی، دانشکده ادبیات و علوم انسانی.
کارگران، س. (1395). تأثیر قابلیت‌های رسانه‌های اجتماعی بر عملکرد مدیریت دانش مشتری. پایان‌نامه کارشناسی ارشد دانشگاه حضرت معصومه (س).
ماهری، م. و حسینی، م. (1393). بررسی تأثیرات بازاریابی دهان‌به‌دهان الکترونیکی بر نام تجاری در ایران: شبکه نگاری یک انجمن اینترنتی. پژوهش‌های مدیریت در ایران، 18(4)، 159-139.
محقر، علی؛ حجت براززاده، حجت و اقبال، رؤیا. (1396). شناسایی و اولویت‌بندی عوامل مؤثر بر تبلیغات اینترنتی در بازار ایران با استفاده از روش‌های تصمیم‌گیری چندشاخصه فازی (مطالعه موردی: صنعت پوشاک). پژوهش‌های نوین در تصمیم‌گیری، 2(1)، 177-149.
محمدی، سمیه؛ نورایی، طهمورث و شریفیان، اسماعیل. (1395). ارائه مدل معادلات ساختاری عوامل تأثیرگذار بر توسعه خرید اینترنتی کالاهای ورزشی. پژوهش‌های کاربردی در مدیریت ورزشی. 4(4)، 43-54.
میرزائی، ل. (1398). بررسی رابطه بین تجارت اجتماعی و قصد خرید با توجه به نقش میانجی اعتماد، سودمندی ادراک­شده و سهولت استفاده ادراک­شده؛ مطالعه موردی: استفاده‌کنندگان شبکه‌های اجتماعی، اینستاگرام، تلگرام و واتساپ در شهر رشت. پایان‌نامه کارشناسی ارشد موسسه آموزش عالی غیرانتفاعی و غیردولتی مهر آستان.
 
Alalwan, A. A., Rana, N. P., Dwivedi, Y. K., & Algharabat, R. (2017). Social media in marketing: A review and analysis of the existing literature. Telematics and Informatics, 34 (7), 1177-1190.
Al-Zyadat, A.Y. (2017), Consumers Attitudes toward Marketing Deception in Advertisement: An Empirical Study in Irbid City- Jordan, Saudi Journal of Business and Management Studies, 2(3), 143-148
Attri, r., Dev, n., & Sharma, v. (2013). Interpretive Structural Modelling (ISM) approach: An Overview. Research Journal of Management Sciences, 2 (2), 3-8
Bagherjeiran, A H., Hatch, A.O., Ratnaparkhi, A., Joshi, A.S., (2015). Contextual advertising with user features; Google Patents, 61-86.
Bannister, A., Kiefer, J., & Nellums, J. (2013). College students’ perceptions of and behaviors regarding Facebook© advertising: An exploratory study. The Catalyst, 3 (1), 1-19
Bianchi, C., & Andrews, L. (2015). Investigating marketing managers' perspectives on social media in Chile. Journal of Business Research, 68 (12), 2552-2559.
Boateng, H., & Okoe, A. F. (2015). Consumers’ attitude towards social media advertising and their behavioural response. Journal of Research in Interactive Marketing, 9 (4), 299-312
Cawley, J., Avery, R., Eisenberg, M. (2013), The Effect of Deceptive Advertising on Consumption of the Advertised Good and its Substitutes: The Case of Over-the-Counter Weight Loss Products, National Bureau of Economic Research, No. 7247, 1-46
Chaouachi, S.G., Ben Rached, K.S. (2019), Perceived deception in advertising: antecedents and consequences, European Journal of Management and Marketing Studies, 3 (4), 123- 141
Chen, S. C., & Lin, C. P. (2019). Understanding the effect of social media marketing activities: The mediation of social identification, perceived value, and satisfaction. Technological Forecasting and Social Change, 140, 22-32.
Davis, R., Piven, I., & Breazeale, M. (2014). Conceptualizing the brand in social media community: The five sources model. Journal of retailing and consumer services, 21 (4), 468-481.
De Vries, N. J., & Carlson, J. (2014). Examining the drivers and brand performance implications of customer engagement with brands in the social media environment. Journal of Brand Management, 21 (6), 495-515.
Dutta, A., Paria, S., Golui, T., & Kole, D. K. (2014). Noise elimination from web page based on regular expressions for web content mining. In Advanced Computing, Networking and Informatics-Volume 1 (545-554). Springer, Cham.
Ebrahimi, P., Kot; S., Fekete-Farkas, M. (2020). Platform Entrepreneurship: An Interpretive structural modeling. Nordic Journal of Media Management, 1 (3), 385-400
Fathy, D; AbouAish, E., El-Sharnouby, T. (2013), Understanding the Egyptian consumers’ perception of deception in advertising: Developing Research Propositions, Academy of Marketing Annual Conference, Wales, UK, 1-9
Fathy, D; AbouAish, E., El-Sharnouby, T. (2014), Demographic Differences in Consumer Perception of Deception in AdvertisingThe Egyptian Case, Conference: Academy of Marketing, At Bournemouth, UK, 1-8
Fayyaz, N., Lodhi. S., (2015), Deceptive Advertising Practices and Customer Loyalty a Case of Mobile Phones in Karachi, Pakistan, European Journal of Business and Management, 7 (31), 83-88
George, J.F., Giordano, G., Tilley, P.A. (2014), Sender credibility and deception detection, Computers in Human Behavior, 35, 1–11
George, J.F., Giordano, G., Tilley, P.A. (2016), Website credibility and deceiver credibility: Expanding Prominence-Interpretation Theory, Computers in Human Behavior, 54, 83-93
Gerlitz, C., & Helmond, A. (2013). The like economy: Social buttons and the data-intensive web. New media & society. 15 (8), 1348-1365.
 Grace, D., & O'Cass, A. (2004).Examining service experiences and post‐consumption evaluations. Journal of Services Marketing, 18 (6), 450-461
Grazioli, S. (2004). Where Did They Go Wrong? An Analysis of the Failure of Knowledgeable Internet Consumers to Detect Deception over the Internet. Group Decision andNegotiation, 13 (2), 149-160
Grazioli, S., Jarvenpaa, S. L. (2001). Tactics used against consumers as victims of Internet deception. Paper presented at the Seventh Americas Conference on Information Systems.
Grazioli, S., Wang, A. (2001). Looking without seeing: understanding unsophisticated consumers' success and failure to detect Internet deception. Paper presented at the Twenty-Second International Conference on Information Systems, 193-204
Grossman, M., (2017), the Relationship between Online Deception, Machiavellian Personality, Self-steem, and Social Desirability, Dissertation Proposal presented to the Faculty of the California School of Professional Psychology, Alliant International University, San Diego, In partial fulfillment of the requirement for the degree Doctor of Psychology
Han, J., Drumwright, M., Go, W., (2018), Native Advertising: Is Deception an Asset or a Liability?  Journal of Media Ethics, DOI:10.1080/23736992.2018.1477048
Hooi, R., Cho, H. (2013), Deception in avatar-mediated virtual environment, Computers in Human Behavior, 29, 276–284
Hossain, M. A., Dwivedi, Y. K., Chan, C., Standing, C., & Olanrewaju, A. S. (2018). Sharing political content in online social media: A planned and unplanned behaviour approach. Information Systems Frontiers, 20 (3), 485-501.
Huang, X., Zeng, Z., & Zhang, H. (2013). Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 42 (5), 1934-1946.
Hunt, D. S., Lin, C. A., & Atkin, D. J. (2014). Communicating social relationships via the use of photo-messaging. Journal of Broadcasting & Electronic Media, 58 (2), 234-252.
Jung, A. R. (2017). The influence of perceived ad relevance on social media advertising: An empirical examination of a mediating role of privacy concern. Computers in Human Behavior, 70, 303-309.
Kamal Khan, S; Saeed, N., Feroz, M., Liaqaut, S., Khan, A., Jabeen, Z. (2015), Impact of Deceptive Marketing on Consumers Behavior: A Case of Cellular Industry of Pakistan, Journal of Marketing and Consumer Research, 18, 91-100
Kamboj, S., Sarmah, B., Gupta, S., & Dwivedi, Y. (2018). Examining branding co-creation in brand communities on social media: Applying the paradigm of Stimulus-Organism-Response. International Journal of Information Management, 39, 169-185.
Kapoor, K. K., Tamilmani, K., Rana, N. P., Patil, P., Dwivedi, Y. K., & Nerur, S. (2018). Advances in social media research: Past, present and future. Information Systems Frontiers, 20 (3), 531-558.
Keng, C. J., Huang, T. L., Zheng, L. J., & Hsu, M. K. (2007). Modeling service encounters and customer experiential value in retailing: An empirical investigation of shopping mall customers in Taiwan. International Journal of Service Industry Management, 18 (4), 349-367
Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65 (10), 1480-1486.
Kircova, I., & Cinar, D. (2015). Digital Advertising Practices and its Impacts on Students: An Application in the Public and Private Universities in Turkey. In Handbook of Research on Effective Advertising Strategies in the Social Media Age (388-405). IGI Global.
Kumar, S. H., & Suratkumari, M. (2015). Impact of prime-time revolution on radio advertising in Bangalore city. International Journal of Marketing and Technology, 5 (1), 120-126.
Lambeens, M. D. J. (2014), Personal Information Disclosure and Deception inOnline Shopping Environments, Tilburg University, Bachelor’s Thesis, School of Humanities, Communication and Information Sciences, Thesis supervisor: M.M. van Zaanen, Second Reader: dr.ir. P.H.M. Spronck
LaTour, M. S., LaTour, K. A. (2009). Positive mood and susceptibility to false advertising, Cornell University, School of Hospitality Administration site: http://scholarship.sha.cornell.edu/articles/313
Lee, J., & Hong, I. B. (2016). Predicting positive user responses to social media advertising: The roles of emotional appeal, informativeness, and creativity. International Journal of Information Management, 36 (3), 360-373.
Lee, U-K., (2015), The Effect of Information Deception in Price Comparison Site on the Consumer Reactions: An Empirical Verification, Hindawi Publishing Corporation, International Journal of Distributed Sensor Networks, Volume 2015, Article ID 270685, 1-12
Lin, C. A., & Kim, T. (2016). Predicting user response to sponsored advertising on social media via the technology acceptance model. Journal of Computers in Human Behavior, 64, 710-718.
Logan, K., Bright, L. F., & Gangadharbatla, H. (2012). Facebook versus television: advertising value perceptions among females. Journal of Research in Interactive Marketing. 6 (3), 164 - 179
Malone, D. W. (2014). An introduction to the application of interpretive structural modeling. Proceedings of the IEEE, 63 (3), 397-404.
Martínez, M.P. R., 2013, Ethical issues in online retailing from consumers’ perspective, Universidad de Murcia facultad de economia y empresa, http://hdl.handle.net/10803/124103
Nilsson, O., & Thyr, A. (2012). The importance of social networks for expatriate managers: A case study from Russia. Uppsala UniversityDepartment of Business StudiesMaster ThesisSpring Semester1-43
Njomo, L.M. (2014), Analyzing the impact of deceptive advertising in private higher education on students in Cameroon, Journal of Business and Retail Management Research (JBRMR), 9, Issue 1, 73-88
Olson, J., Dover, P., (1978), Cognitive Effects of Deceptive Advertising, Journal of Marketing Research, 15 (1), 29-38
Ormond, D; Warkentin, M., Johnston, A.C., Thompson, S.C. (2016), Perceived deception: Evaluating source credibility and self-efficacy, journal of information privacy and security, 12(4), 197–217
Park, S., Jun, J., Park, H., 2017, What Factors Affect to Curation Commerce Website Loyalty Intention: The Mediating Effects of Perceived Deception, Quality innovation prosperity, 21(3), 95-113
Pham, T. S. H., & Ahammad, M. F. (2017).Antecedents and consequences of online customer satisfaction: A holistic process perspective. Technological Forecasting and Social Change, 124, 332-342.
Raacke, J., & Bonds-Raacke, J. (2008). MySpace and Facebook: Applying the uses and gratifications theory to exploring friend-networking sites. Cyberpsychology & behavior, 11 (2), 169-174.
Riquelme, I.P and Roman, S, (2014), The Influence of Consumers’ Cognitive and Psychographic Traits on Perceived Deception: A Comparison between Online and Offline Retailing Contexts, J Bus Ethics, 119, 405–422
Rockmann, W. K., Northcraft, G.B. (2008), To be or not to be trusted: The influence of media richness on defection and deception, Organizational Behavior and Human Decision Processes, 107, 106–122
Román, S., Riquelme, I. P., Iacobucci, D., 2019, Perceived Deception in Online Consumer Reviews: Antecedents, Consequences, and Moderators, Review of Marketing Research, 16, 141-166
Saxena, A., Khanna, U., 2013, Advertising on Social Network Sites: A Structural Equation Modelling Approach, Vision. The Journal of Business Perspective, 17 (1), 17-25
Shabbir, H., Thwaites, D., (2007), The use of humor to mask deceptive advertising, Journal of Advertising, 36 (2), 75–85
Shareef, M. A., Mukerji, B., Alryalat, M. A. A., Wright, A., & Dwivedi, Y. K. (2018). Advertisements on Facebook: Identifying the persuasive elements in the development of positive attitudes in consumers. Journal of Retailing and Consumer Services, 43, 258-268.
Shiau, W. L., Dwivedi, Y. K., & Yang, H. S. (2017). Co-citation and cluster analyses of extant literature on social networks. International Journal of Information Management, 37 (5), 390-399.
Singh, M. D., & Kant, R. (2011). Knowledge management barriers: An interpretive structural modeling approach. International Journal of Management Science and Engineering Management, 3 (2), 10.
Stevens, R., Gibler, C., Crussell, J., Erickson, J., & Chen, H. (2012, May). Investigating user privacy in android ad libraries. In Workshop on Mobile Security Technologies (MoST) (10). Citeseer.
Stokes, S.A, (2009), Deception in environmental advertising: consumers’ reactions to greenwashing, master of science, Department of Journalism and Mass Communications, College of Arts and Science, Kansas state university
Subasic, P., Holtan, H. M., Cabacungan, R. S., Shukla, M., Mehta, R. A., Chang, J. L., Qu, Y. (2013). U.S. Patent.No. 8,504,411. Washington, DC: U.S. Patent and Trademark Office.
Taylor, D. G., Lewin, J. E., & Strutton, D. (2011). Friends, fans, and followers: do ads work on social networks?: How gender and age shape receptivity. Journal of advertising research, 51 (1), 258-275.
Tilley, P.A. (2005), Training, warning and media rechness effects on computer- mediated deception and its detection, The Florida starte university college of bussiness, UMI Number: 3198266, 1-119
Triandis, H.C., Carnevale, P., Gelfand, M., Robert, C., Arzu Wasti, S., Probst, T., Kashima, E.S., Dragonas, T., Chan, D., Ping Chen, X., Kim, U., De Dreu, C., Van De Vliert, E., Iwao, S., Ohbuchi, K.I., Schmitz, P., (2001), Culture and Deception in Business Negotiations: A Multilevel Analysis, International Journal of Cross Cultural Management, 1 (1),73- 90
Warfield, J.N. (1974). Developing interconnected matrices in structural modeling. IEEE Transactions on Systems, Man and Cybernetics, 4 (1), 51-81.
Wei, P. S., & Lu, H. P. (2013). An examination of the celebrity endorsements and online customer reviews influence female consumers’ shopping behavior. Computers in Human Behavior, 29 (1), 193-201.
Wu, C. H. J., & Liang, R. D. (2009). Effect of experiential value on customer satisfaction with service encounters in luxury-hotel restaurants. International Journal of Hospitality Management, 28 (4), 586-593.
Xie, G.X. (2014), Deceptive advertising and third-person perception:The interplay of generalized and specific suspicion, Journal of Marketing Communications, DOI:10.1080/13527266.2014.918051
Zhu, Y. Q., & Chang, J. H. (2016). The key role of relevance in personalized advertisement: Examining its impact on perceptions of privacy invasion, self-awareness, and continuous use intentions. Computers in Human Behavior, 65, 442-447.