مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت صنعتی و کارآفرینی دانشگاه شاهد، تهران، ایران.(نویسنده مسئول: ahabibirad@yahoo.com)

2 کارشناسی ارشد مدیریت صنعتی (گرایش مدیریت عملکرد)، دانشگاه شاهد، تهران، ایران.

چکیده

امروزه بیت‌کوین ﯾﮑﯽ از ﻣﻬﻤﺘﺮﯾﻦ رﻣﺰارزﻫﺎﯾﯽ اﺳﺖ ﮐﻪ ﺑﯿﺸﺘﺮﯾﻦ ﺣﺠﻢ ﻣﺒﺎدﻻت در ﺑﺎزار رﻣﺰارزﻫﺎ و بین کسب‌وکارها را ﺑﻪ ﺧﻮد اﺧﺘﺼﺎص داده اﺳﺖ. ویژگی امکان پرداخت‌های آنلاین بین افراد و کسب‌وکارها بطور مستقیم و بدون مراجعه به موسسه مالی باعث شده قیمت این رمزارز برای کسب‌و-کارها و معامله‌گران حائز اهمیت و مبنای تصمیم‌گیری باشد. بنابراین مسئله قابلیت پیش‌بینی قیمت آن موضوع مهمی است که حجم جستجو می‌تواند بر آن اثرگذار باشد. هدف از این تحقیق، مطالعه و بررسی رابطه حجم جستجوهای اینترنتی و تأثیر آن بر قیمت این رمزارز است. همچنین، یکی دیگر از اهداف مقاله حاضر، معرفی گوگل ترندز به عنوان ابزار دسترسی به داده‌های بزرگ جهت انجام پژوهش‌ها در حوزه کسب و کار است. داده‌های لازم از گوگل ترندز در بازه زمانی سال 2016 تا 2021 است استخراج شد. حجم داده‌ها 5742 بوده و از کل جامعه آماری استفاده شده است. روش تحقیق، توصیفی-اکتشافی است که با هدف تبیین ارتباط بین «شاخص حجم جستجوی گوگل» و «قیمت بیت-کوین» انجام گرفته است. داده‌ها با استفاده از آزمون همبستگی اسپیرمن تجزیه و تحلیل گردید. یافته‌ها حاکی از ارتباط قوی و بسیار قوی بین شاخص‌های مورد بررسی است که تبیین شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Explaining the Relationship Between Bitcoin Price in Business Financial Transactions and Search Volume in Order to Identify its Behavioral Pattern: A Comparative Study Between Countries

نویسندگان [English]

  • Amin Habibirad 1
  • Ali Panahi 2

1 Assistant Professor, Department of Industrial Management and Entrepreneurship, Shahed University, Tehran, Iran (Corresponding Author: ahabibirad@yahoo.com).

2 Master of Industrial Management, Shahed University, Tehran, Iran

چکیده [English]

Nowadays, Bitcoin is one of the most important cryptocurrencies that has the largest volume of exchanges in the cryptocurrency market and between businesses. The feature of the possibility of online payments between individuals and businesses directly and without referring to the financial institution has made the price of these cryptocurrencies important for businesses and traders and the basis for decision making. Therefore, the issue of price predictability is an important issue that can be affected by search volume. The purpose of this research is studying and investigating the relationship between the volume of Internet searches and its effect on the price of these cryptocurrencies. In addition, another goal of this article is to introduce Google Trends (GT) as a tool for accessing big data for business researches. The required data was extracted from Google Trends in the period 2016 to 2021. The volume of data was 5742 and the whole statistical population was used. The research method is descriptive-exploratory with the aim of explaining the relationship between "Google search volume index" and "bitcoin price". Data were analyzed using Spearman correlation test. Findings indicate a strong and very strong relationship between the studied indicators, which is explained.

کلیدواژه‌ها [English]

  • "cryptocurrency"
  • "Bitcoin"
  • "Google Trends
  • Google search volume index (GSVI)"
  • "Correlation"
محمدی و، یوسفی نژاد، م، حسین زاده، م. (1397). پیاده سازی سیستم‌های توصیه‌گر هتل‌ها با استفاده از اولویت‌های کاربران در توییتر. مطالعات مدیریت کسب‌وکار هوشمند، 7(25)، 85-118.  doi: 10.22054/ims.2018.9745
References
Aalborg, H A., Molnár, P., & Vries, J E. (2019). What can explain the price, volatility and trading volume of Bitcoin?. Finance Research Letters, 29, 255–265.
Afkhami, M., Cormack, L., & Ghoddusi, H. (2017). Google search keywords that best predict energy price volatility. Energy Economics, 67, 17–27.
Ammous, S. (2018). Can cryptocurrencies fulfil the functions of money?, The Quarterly Review of Economics and Finance,
Aras, S. (2021). Stacking hybrid GARCH models for forecasting Bitcoin volatility. Expert Systems with Applications, 174, 114747.
Bariviera, A F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4.
Bartos, J. (2015). Does Bitcoin follow the hypothesis of efficient market. International Journal of Economic Sciences. 4 (2), 10–23.
Baur, D.G., Hong, K., & Lee, A. (2018). Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 54, 177–189.
Biji, L., Kringhaug, G., Molnár, P. & Sandvik, E. (2016). Google searches and stock returns, International Review of Financial Analysis, 45, 150–156.
Blau, B.M., Griffith, T.G., & Whitby, R J. (2021). Inflation and Bitcoin: A descriptive time-series analysis. Economics Letters, 203, 109848.
Bokelmann, B., & Lessmann, S. (2019). Spurious patterns in Google Trends data - An analysis of the effects on tourism demand forecasting in Germany. Tourism Management, 75, 1–12.
Brauneis, A., & Mestel, R. (2018). Price discovery of cryptocurrencies: Bitcoin and beyond. Economics Letters, 165, 58–61.
Bukovina, J., & Marticek, M. (2016). Sentiment and Bitcoin Volatility. MENDELU Working Papers in Business and Economics.
Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28–43.
Chen, H., De, P., Yu, H., & Hwang, B. (2011). Sentiment evealed in Social Media and its Effect on the Stock Market. IEEE Statistical Signal Processing Workshop
Choi, H. (2021). Investor attention and bitcoin liquidity: Evidence from bitcoin tweets. Finance Research Letters, 39, 101555.
Costola, M., Iacopini, M., & Santagiustina, C. (2020). Google search volumes and the financial markets during the COVID-19 outbreak. Finance Research Letters, 2020, 101884.
Daniel, K., Hirshleifer, D. & Subrahmanyam, A. (1998). Investor psychology and security market under- and over- reactions. The Journal of Finance, 53 (6): 1839-1885.
Dastgir, S., Demir, E., Downing, G., Gozgor, G., & Lau, C. (2019). The Causal Relationship between Bitcoin Attention and Bitcoin Returns: Evidence from the Copula-based Granger Causality Test. Finance Research Letters, 28, 160–164.
Dyhrberg, A H. (2016). Bitcoin, gold and the dollar–A garch volatility analysis. Finance Research Letters, 16, 85–92.
Frino, A., Jones, S., Lepone, A. & Boon, J. (2014), Market Behavior of Institutional Investors around Bankruptcy Announcements. Journal of Business Finance & Accounting, 41 (1): 270-295.
Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D., & Giaglis, G M. (2015). Using time-series and sentiment analysis to detect the determinants of bitcoin prices. http://dx.doi.org/10.2139/ssrn.2607167.
Glaser, F., Haferhorn, M., Weber, M.C., Zimmarmann, K., & Siering, M.b. (2014). Bitcoin–Asset or currency? Revealing users’ hidden intentions. Twenty Second European Conference on Information Systems, ECIS2014.
Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends, Neurocomputing, 285, 188–195.
Huynh, T. Burggraf, T., & Wang, M. (2020). Gold, platinum, and expected Bitcoin returns. Journal of Multinational Financial Management, 56, 100628.
Ibikunle, G., McGroarty, F., & Rzayev, K. (2020). More heat than light: Investor attention and bitcoin price discovery. International Review of Financial Analysis, 69, 101459.
Figá-Talamanca, G., & Patacca, M. (2019). Does market attention affect Bitcoin returns and volatility?. Decisions in Economics and Finance volume, 42, 135–155.
Karalevicius, V., Degrande, N., & DeWeerdt, J. (2018). Using sentiment analysis to predict interday Bitcoin price movements. J. Risk Finance. 19 (1), 56–75.
Kjærland, F., Khazal, A., Krogstad, E A., Nordstrøm, F, & Oust, A. (2018). An Analysis of Bitcoin’s Price Dynamics. Journal of Risk and Financial Management, 11(4), 1–18.
Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3, 3415.
Kristoufek, L. (2015). What are the main drivers of the Bitcoin price? Evidence from Wavelet coherence analysis. PLoS One, 10 (4), 1–15.
Lahmiri, S., & Bekiros, S. (2020). Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market. Chaos, Solitons & Fractals, 133, 109641.
Lahmiri, S., Bekiros, S., & Salvi, A. (2018). Long-range memory, distributional variation and randomness of bitcoin volatility. Chaos Solitons Fractals, 107, 43–48.
Larson, W., & Sinclair, T. (2021). Nowcasting unemployment insurance claims in the time of COVID-19. International Journal of Forecasting, Available online 11 January 2021.
Li, Z., Chen, L., & Dong, H. (2021). What are bitcoin market reactions to its related events? International Review of Economics & Finance, 73, 1–10.
Liu, M., Li, G., Li, J., Zhu, X., & Yao, Y. (2020). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, Available online 6 September 2020, 101755.
Liu, Y., & Tsyvinski, A. (2018). Risks and returns of cryptocurrency. National Bureau of Economic Research. DOI 10.3386/w24877.
Lyócsa, Š., Molnár, P., Plíhal, T., & Širanova, M. (2020). Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin. Journal of Economic Dynamics & Control, 119, 103980.
Nadarajah, S., & Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150, 6–9.
Park, S., Jang, K., & Yanga, J. (2021). Information flow between bitcoin and other financial assets. Physica A: Statistical Mechanics and its Applications, 566, 125604.
Philippas, D., Rjiba, H., Guesmi., K. & Goutte, S. (2019). Media attention and Bitcoin prices, Finance Research Letters, 30, 37‍43.
Prasanth, S., Singh, U., Kumar, A., Tikkiwal, V., & Chong, P. (2021). Forecasting spread of COVID-19 using google trends: A hybrid GWO deep learning approach. Chaos, Solitons & Fractals, 142, 110336.
Preis, T., Moat, H., & Stanley, E. (2013). Quantifying trading behavior in financial markets using google trends. Scientific reports, 3, 1–6.
Salisu, A., E.Ogbonna, A., & Adewuyie, A. (2020). Google trends and the predictability of precious metals. Resources Policy, 65, 101542.
Shen, D., Urquhart, A., & Wang, P. (2019). Does twitter predict Bitcoin?. Economics Letters, 174, 118–122.
Sheth, A., Bhandari, R., Patel, H., Thakkar, S., Patel, R., & Dominic, P. (2020). Use of Google Trends as a Novel Epidemiological Tool. Journal of Cardiac Failure, 26 (10), S81.
Shu, M., & Zhu, W. (2020). Real-time prediction of Bitcoin bubble crashes. Chaos, Solitons & Fractals, 133, 109641.
Tiwari, A., Jana, R., Das, D., & Roubaud, D. (2018). Informational efficiency of Bitcoin–An extension. Economics Letters, 163, 106109.
Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82.
Urquhart, A. (2018). What causes the attention of Bitcoin?. Economics Letters, 166, 40–44.
Yi, C., Hao, L., Qingpeng, Z., Qijin, C., Lui, C., & Yip, P. (2019). Developing an early warning system of suicide using Google Trends and media reporting. Journal of Affective Disorders, 255, 41–49.
Yonghong, J., He, N., & Weihua, R. (2018). Time-varying long-term memory in Bitc market. Finance Research Letters, 25(C), 280–284.
Yu, J., Kang, J., & Park, S. (2019). Information availability and return volatility in the bitcoin Market: Analyzing differences of user opinion and interest. Information Processing and Management, 56, 721–732.
Zhang, W., Wang, P., Li, X., & Shen, D. (2018). Quantifying the cross-correlations between online searches and Bitcoin market. Physica A: Statistical Mechanics and its Applications, 509, 657–672.
Zhang, Y., Bambrick, H., Mengersen, K., Tong, S., & Hu, W. (2018). Using Google Trends and ambient temperature to predict seasonal influenza outbreaks. Environment International, 117, 284–291.
Mohammadi, V., Yousefinejad M., & Hosseinzadeh, M. (2018). Schematic Design of Hotel Recommendation Systems by user Precedence on Twitter. BI Management studies, 7 (25), 85–118. (in Persian)
 
 
استناد به این مقاله: حبیبی راد، امین، پناهی، علی. (1400). تبیین رابطه قیمت بیت‌کوین در مبادلات مالی کسب‌وکارها و حجم جستجو به‌منظور شناسایی الگوی رفتاری آن: یک مطالعه تطبیقی بین کشورها، مطالعات مدیریت کسب وکار هوشمند، 10(37)، 347-372.
DOI: 10.22054/IMS.2021.61455.1982
 Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..