مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مدیریت سیستم‌های اطلاعاتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

2 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.نویسنده مسئول: Fatemeh Saghafi, fsaghafi@ut.ac.ir

3 استادیار دانشکده برق و رایانه، دانشگاه آزاد اسلامی واحد قزوین، قزوین، ایران.

چکیده

سیستم‌های توصیه‌گر یکی از ضروری ترین ابزارهای هوشمندسازی تجارت الکترونیک است. این سیستم‌ها با انواع مختلف روش‌های فیلتر­کردن داده‌ها و داده‌کاوی، قادر به انتخاب و ارایه بهترین پیشنهادات از بین انبوه موارد قابل انتخاب برای مشتریان هستند. در بین روش‌های متنوع سیستم‌های توصیه‌گر، فیلترهای اشتراکی پرکاربردترین روش برای ارایه پیشنهادات است. فیلترهای اشتراکی دامنه وسیعی از الگوریتم‌ها را شامل می‌شود و در این بین، روش تجزیه ماتریس به مقادیر منفرد یکی از مدل‌های پیشرفته در فیلتر اشتراکی است. در این مقاله به ارایه مدلی بهینه شده از سیستم توصیه‌گر فیلم مبتنی بر روش تجزیه مقادیر منفرد پرداخته شده که ضمن کاهش ابعاد ماتریس و کاهش حجم محاسبات و حافظه، با روش تکرار جاگذاری، دارای دقت مناسب نسبت به روش تجزیه ماتریس به مقادیر منفرد ساده و سایر روش‌های دیگر است. برای این پژوهش از مجموعه دیتاست‌های 100 هزار امتیازی مووی لنز و از برنامه نویسی پایتون استفاده شده‌است. ارزیابی میزان خطا با روش‌های جذر میانگین مربعات خطا و میانگین قدر مطلق خطا، نشان از بهبود مناسب نسبت به روش‌های مشابه در مراجع دیگر دارد.

کلیدواژه‌ها

عنوان مقاله [English]

A Novel Movie Recommendation System with Iterated Truncated Singular Value Decomposition (ITSVD)

نویسندگان [English]

  • Nozar Ebrahimi Lame 1
  • Fatemeh Saghafi 2
  • Majid Gholipour 3

1 PhD student of Department of Management Information Systems, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Associate professor of Faculty of Management, University of Tehran, Tehran, Iran.Corresponding Author: : Fatemeh Saghafi, fsaghafi@ut.ac.ir

3 Assistant Professor of Faculty of Electrical and Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran

چکیده [English]

Recommendation systems are one of the most essential tools for e-commerce intelligence. These systems with different types of data filtering methods are able to offer the best recommendations from a multitude of selectable items. Collaborative Filtering is the most widely used method of filtering data to make recommendations. One of the advanced models for predicting ratings in the Collaborative Filtering is the Singular Value Decomposing (SVD). In this paper, an optimized model of the film recommending system based on the SVD method is developed, which while reducing the dimensions of the matrices and the volume of computations and memory, and with iteration replacement method, has appropriate accuracy compared with other methods. For this research, a set of 100k Movie Lens datasets and Python programming have been used. Evaluation of error rate with root mean square error (RMSE) and mean absolute error (MAE) value shows a good improvement over similar methods in other references.vv
 

کلیدواژه‌ها [English]

  • Recommendation System
  • Collaborative Filtering
  • Singular Value Decomposition
  • Ratings Prediction
ابراهیمی، ل، میرابی، و، رنجبر، م و حسن پور، ا. (1398). مدل وفاداری مشتری برای سیستم‌های توصیه‌گر در تجارت الکترونیک، نشریه علمی مطالعات مدیریت کسب و کار هوشمند، 8 (29)،143-170. https://dx.doi.org/10.22054/ims.2019.10379
حیدری، ب، پروین نیا، ا. (1396). ارایه مدلی برای سیستم‌های توصیه‌گر فیلم مبتنی بر رویکرد مشارکت محور، مجله فناوری اطلاعات در طراحی مهندسی، 10 (1)، 1-9.
محمدی، ف، یزدانی، ح و ادیب زاده، م. (1399). فرا تحلیل مطالعات خرید آنلاین، بررسی و ترکیب نتایج پژوهش های انجام شده در زمینه خرید آنلاین، نشریه علمی مطالعات مدیریت کسب و کار هوشمند،9 (33)، 101-142.
 
References
Aggarwal, C. C., & Textbook, T. (2016). Recommender Systems : Text Book.
Ahuja, R., Solanki, A., & Nayyar, A. (2019). Movie Recommender System Using K-Means Clustering AND K-Nearest Neighbor. Proceedings of the 9th International Conference On Cloud Computing, Data Science and Engineering, Confluence 2019, 263–268. https://doi.org/10.1109/CONFLUENCE.2019.8776969
Alamdari, P. M., Navimipour, N. J., Hosseinzadeh, M., Safaei, A. A., & Darwesh, A. (2020). A Systematic Study on the Recommender Systems in the E-Commerce. IEEE Access, 8, 115694–115716. https://doi.org/10.1109/ACCESS.2020.3002803
Andreas, M. (2017). Matrix Factorization Techniques for Recommender Systems [University of The Aegean, School of Engineering]/thesis https://hellanicus.lib.aegean.gr/bitstream/handle/11610/18038/Matrix_Factorization_techniques_for_Recommender_Systems.pdf?sequence=1
Bahl, D., Kain, V., Sharma, A., & Sharma, M. (2020). A novel hybrid approach towards movie recommender systems. Journal of Statistics and Management Systems, 23 (6) , 1049–1058. https://doi.org/10.1080/09720510.2020.1799503
Bhavana, P., Kumar, V., & Padmanabhan, V. (2019). Block based Singular Value Decomposition approach to matrix factorization for recommender systems. http://arxiv.org/abs/1907.07410
Choi, S. M., Ko, S. K., & Han, Y. S. (2012). A movie recommendation algorithm based on genre correlations. Expert Systems with Applications, 39 (9) , 8079–8085. https://doi.org/10.1016/j.eswa .2012.01.132
Falk, K. (2019). Practical Recommender Systems. https://www.mendeley.com/catalogue/4db84cb8-e911-3167-a969-98d4c25707f3/?utm_source=desktop&utm_medium=1.19.4&utm_campaign=open_catalog&userDocumentId=%7B09985284-1648-45ae-9586-8265d1bb4ad2%7D
Guan, X., Li, C. T., & Guan, Y. (2017). Matrix Factorization with Rating Completion: An Enhanced SVD Model for Collaborative Filtering Recommender Systems. IEEE Access, 5, 27668–27678. https://doi.org/10.1109/ACCESS.2017.2772226
Lekakos, G., & Caravelas, P. (2008). A hybrid approach for movie recommendation. Multimedia Tools and Applications, 36 (1–2) , 55–70. https://doi.org/10.1007/s11042-006-0082-7
Li, X., Zhao, H., Wang, Z., & Yu, Z. (2020). Research on Movie Rating Prediction Algorithms. 2020 5th IEEE International Conference on Big Data Analytics, ICBDA 2020, 121–125. https://doi.org/10.1109/ICBDA49040.2020.9101282
Netflix Prize. www.netflixprize.com
Patra, S., & Ganguly, B. (2019). Improvising Singular Value Decomposition by KNN for Use in Movie Recommender Systems. Journal of Operations and Strategic Planning, 2 (1) , 22–34. https://doi.org/10.1177/2516600x19848956
Patra, S., & Ganguly, B. (2019). Improvising Singular Value Decomposition by KNN for Use in Movie Recommender Systems. Journal of Operations and Strategic Planning, 2 (1) , 22–34. https://doi.org/10.1177/2516600x19848956
Raghuwanshi, S. K., & Pateriya, R. K. (2019). Recommendation systems: Techniques, challenges, application, and evaluation. In Advances in Intelligent Systems and Computing (Vol. 817, pp. 151–164). https://doi.org/10.1007/978-981-13-1595-4_12
Rahul, M., Kumar, V., Yadav, V., & Rishabh. (2021). Movie recommender system using single value decomposition and K-means clustering. IOP Conference Series: Materials Science and Engineering, 1022 (1). https://doi.org/10.1088/1757-899X/1022/1/012100
Saadati, M., & Shihab, S. (n.d.). Movie Recommender Systems: Implementation and Performance Evaluation/2019
Vaheb, A.. https://aparat.design/recommendation-systems-in-filimo-cqzge4gfsevi
Zhang, Y., Abbas, H., & Sun, Y. (2019). Smart e-commerce integration with recommender systems. In Electronic Markets (Vol. 29, Issue 2, pp. 219–220). https://doi.org/10.1007/s12525-019-00346-x
Zhou, X., He, J., Huang, G., & Zhang, Y. (2015). SVD-based incremental approaches for recommender systems. Journal of Computer and System Sciences, 81 (4) , 717–733. https://doi.org/10.1016/j.jcss.2014.11.016
References [In Persian]
Ebrahimi, L., Mirabi, and, Ranjbar, M. and Hassanpour, A. (1398). Customer Loyalty Model for Advisory Systems in E-Commerce, Scientific Journal of Intelligent Business Management Studies, 8 (29), 143-170. https://dx.doi.org/10.22054/ims.2019.10379 [ In Persian]
Heydari, B, Parvin Nia, A. (1396). Providing a Model for Participatory Oriented Film Recommending Systems, Journal of Information Technology in Engineering Design, 10 (1), 1-9. [ In Persian]
Mohammadi, F. Yazdani, H. and Adibzadeh, M. (1399). Meta-analysis of online shopping studies, review and synthesis of research results in the field of online shopping, Scientific Journal of Smart Business Management Studies, 9 (33), 101-142. https://dx.doi.org/10.22054/ims.2020.12038[ In Persian]