مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده علوم اجتماعی و اقتصاد ، دانشگاه الزهرا، تهران، ایران

2 دانشیار، مدیریت، دانشکده علوم اجتماعی و اقتصاد دانشگاه الزهرا (س)، تهران، ایران.

3 استادیار، دانشکده فناوری اطلاعات، موسسه آموزش عالی مهرالبرز، تهران، ایران

چکیده

رشد اینترنت، ‌شبکه‌های اجتماعی و وبسایت‌های تجارت الکترونیک بستری جهت ارائه عقاید و نظرات برای کاربران فراهم می نمایند. در سال های اخیر بسیاری از کاربران احساسات و نظرات خوب یا بد خود را در مورد غذا،‌ خدمات، کیفیت و فضای رستوران ها در بسترهای آنلاین بیان می کنند. این نظرات برای تصمیم گیری سایرکاربران و همینطور رستوران ها جهت حفظ کیفیت، توسعه‌ی محصول و برندشان بسیار مهم می باشند. تحلیل احساسات رویکردی جهت پردازش زبان طبیعی است و امکان تحلیل سیستماتیک نظرات کاربران را فراهم می نماید. با توجه به اهمیت این موضوع هدف این مطالعه ارائه‌ی مدل تحلیل احساسات نظرات سایت تریپ‌ادوایزر درباره‌ی رستوران‌های ایرانی می‌باشد. در این تحقیق ما تحلیل احساسات مبتنی بر جنبه بر اساس الگوریتم یادگیری عمیق شبکه‌ی عصبی حافظه‌ی طولانی کوتاه‌مدت استاندارد را برای استخراج احساسات کاربران در مورد رستوران‌ها پیشنهاد نموده‌ایم. برای آموزش مدل، 4000 نظر طبق چهار جنبه در سه حالت عدم اشاره، مثبت و منفی برچسب زده شد و گام‌های مطالعه طبق متدولوژی کریسپ صورت گرفت. میزان دقت برای معیارهای غذا، سرویس، قیمت و اتمسفر به ترتیب 82%، 86%، 87% و 81% به دست آمد. این نتایج نشان از کارایی و عملکرد قابل قبول مدل برای تحلیل احساسات مبتنی بر جنبه‌ی رستوران‌ها است. همچنین جنبه‌ی غذا و اتمسفر به ترتیب مهم‌ترین جنبه‌ها برای مشتریان رستوران‌های ایرانی محسوب می‌شوند. رستوران‌داران و صاحبان کسب‌وکار می‌توانند از مدل توسعهیافته برای کسب مزیت رقابتی و یافتن نقاط قوت و ضعف خود استفاده کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Sentiment analysis of TripAdvisor comments for Iranian restaurants with a deep learning approach

نویسندگان [English]

  • Armina Mohseni 1
  • ameneh khadivar 2
  • Fatemeh Abbasi 3

1 Faculty of social science and economics, Alzahra University, Tehran, Iran

2 Associate Professor, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran.

3 Assistant Prof., Dep. of Information Technology, Institute of Higher Education

چکیده [English]

The growth of the Internet, social networks and e-commerce websites provide a platform for users to express their opinions. In recent years, many users have expressed their positive or negative opinions about food, service, and quality and restaurant atmosphere online. These comments are very important for the decision of other users as well as restaurants to maintain quality, product development and their brand. Sentiment analysis is a natural language processing approach and allows systematic analysis of users' opinions. Due to the importance of this issue, the purpose of this study is to present a model for analyzing the sentiment of TripAdvisor's comments about Iranian restaurants. In this research, we propose an aspect-based sentiment analysis based on a deep learning algorithm which is the standard long short-term memory neural network to extract users' sentiments about restaurants. To teach the model, 4000 comments were labeled according to four aspects in three classes of not related, positive and negative, and the study steps were done based on Crisp methodology. Accuracy for food, service, value and atmosphere were 82%, 86%, 87% and 81%, respectively. These results indicate the efficiency and acceptable performance of the model for aspect-based sentiment analysis of restaurants. Furthermore, food and atmosphere are the most important aspects for the customers of Iranian restaurants, respectively. Restaurant owners can use the developed model to gain a competitive advantage and find their strengths and weaknesses.

کلیدواژه‌ها [English]

  • Deep learning
  • Neural network
  • Text mining
  • Sentiment analysis
  • TripAdvisor
الهی، شعبان، خدیور، آمنه و حسن زاده، . علیرضا.(1390). طراحی سیستم خبره پشتیبان تصمیم برای پشتیبانی از فرآیند توسعه استراتژی مدیریت دانش. فصلنامه مدیریت فناوری اطلاعات، 3(8)، 43-62.
حاتمی‌ناغانی، بهمن و عابسی، مسعود. (1395). تحلیل محتوایی مقالات علمی با استفاده از متن‌کاوی. فصلنامه مطالعات مدیریت فناوری اطلاعات، 137–167. / doi. rg 10.22054/IMS.2021.50853.1697
خدیور، آمنه و عباسی، فاطمه. (1395). ارزیابی بلوغ مدیریت دانش در سیصد شرکت برتر ایرانی. پژوهش های نوین در تصمیم گیری، 1(3)، 23-42.
دامی، سینا و محمدی ستوده، ابوالفضل (1396). عقیده کاوی در گردشگری با استفاده از یادگیری بدون نظارت، اولین کنفرانس ملی کامپیوتر و فناوری اطلاعات، سپیدان: دانشگاه آزاد اسلامی واحد سپیدان.
رحیمی، فاطمه، سبط، محمد وحید و غنبرتهرانی، نسیم. (1400). تحلیل الگوی رفتاری مشتریان شعب به روش خوشه بندی و دسته بندی با استفاده از روش RFM. مطالعات مدیریت کسب‌وکارهوشمند، 9(36) 189-209. doi. rg/10.22054/IMS.2021.50853.1697
عباسی، فاطمه، سهرابی، بابک، مانیان، امیرو خدیور، آمنه. (1396). ارایه مدلی جهت دسته بندی احساسات خریداران کتاب با استفاده از رویکرد ترکیبی. مطالعات مدیریت کسب‌وکارهوشمند، 6(21)، 65-92. doi.org/10.22054/ims.2018.8512
Abbasi, F., Khadivar, A., Yazdinejad, M. (2019). A grouping hotel recommender system based on deep learning and sentiment analysis. Journal of Information Technology Management11(2), 59-78.
Agarwal, B., Nayak, R. (2018). Deep Learning- Based Approaches for Sentiment Analysis.
Al-Smadi, M., Qawasmeh, O., Al-Ayyoub, M., Jararweh, Y., Gupta, B. (2018). Deep Recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews. Journal of Computational Science, 27, 386–393. doi.org/10.1016/j.jocs.2017.11.006
Al-Smadi, M., Talafha, B., Al-Ayyoub, M., Jararweh, Y. (2019). Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews. International Journal of Machine Learning and Cybernetics, 10 (8), 2163–2175. doi.org/10.1007/s13042-018-0799-4
Alaei, A. R., Becken, S., Stantic, B. (2017). Sentiment Analysis in Tourism : Capitalizing on Big Data. doi.org/10.1177/0047287517747753
Dang, N. C., Moreno-García, M. N., De la Prieta, F. (2020). Sentiment analysis based on deep learning: A comparative study. Electronics (Switzerland), 9 (3). doi.org/10.3390/electronics9030483
Divyashree, N., L, S. K. K., Majumdar, J. (2017). Opinion Mining and Sentimental Analysis of TripAdvisor. in for Hotel Reviews.
García-Pablos, A., Cuadros, M., Linaza, M. T. (2016). Automatic analysis of textual hotel reviews. Information Technology and Tourism, 16 (1), 45–69. doi.org/10.1007/s40558-015-0047-7
Geetha, M., Singha, P., Sinha, S. (2017). Relationship between customer sentiment and online customer ratings for hotels - An empirical analysis, 61, 43–54.
Haghighi, Mohammad (2012). Evaluation of factors affecting customer loyalty in the restaurant industry. African Journal of Business Management, 6 (14), 5039–5046. doi.org/10.5897/AJBM11.2765
Jia, S. (Sixue). (2018). Behind the ratings: Text mining of restaurant customers’ online reviews. International Journal of Market Research, 60 (6), 561–572. doi.org/10.1177/1470785317752048
Jumaaton, Azmi, (2005). (2014). Fine-grained analysis of aspects , sentiments and types of attitudes in restaurant reviews. Tourism Management Studies, 10 (1), 66–72.
Kharadi, B., Patel, K. (2017). opinion mining of restaurant review by sentiment analysis using svm. International Journal of Innovative Research in Computer and Communication Engineering, 5 (4), 6415–6422. doi.org/10.15680/IJIRCCE.2017
Khorsand, R., Rafiee, M., Kayvanfar, V. (2020). Insights into TripAdvisor’s online reviews: The case of Tehran’s hotels. Tourism Management Perspectives, 34 (August 2019), 100673. doi.org/10.1016/j.tmp.2020.100673
Li, J. Bin, Yang, L. B. (2017). A Rule-Based Chinese Sentiment Mining System with Self-Expanding Dictionary - Taking TripAdvisor as an Example. Proceedings - 14th IEEE International Conference on E-Business Engineering, ICEBE 2017 - Including 13th Workshop on Service-Oriented Applications, Integration and Collaboration, SOAIC 207, 238–242. doi.org/10.1109/ICEBE.2017.45
Liu, N., Shen, B. (2020). Aspect-based sentiment analysis with gated alternate neural network. Knowledge-Based Systems, 188 (xxxx), 105010. doi.org/10.1016/j.knosys.2019.105010
Ma, Y., Peng, H., Cambria, E. (2018). Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 5876–5883.
Maw, S. Y., Khine, M. A. (2019). Aspect based Sentiment Analysis for travel and tourism in Myanmar Language using LSTM, 119–124.
Park, S. B., Jang, J., Ok, C. M. (2016). Analyzing Twitter to explore perceptions of Asian restaurants. Journal of Hospitality and Tourism Technology, 7 (4), 405–422. doi.org/10.1108/JHTT-08-2016-0042
Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.
Qiang, Y., Li, X., Zhu, D. (2020). Toward Tag-free Aspect Based Sentiment Analysis: A Multiple Attention Network Approach. Retrieved from http://arxiv.org/abs/2003.09986
Renganathan, V., Upadhya, A. (2022). Dubai Restaurants : A Sentiment Analysis of Tourist Reviews, (2), 165–174.
Roshanfekr, B., Khadivi, S., Rahmati, M. (2017). Sentiment analysis using deep learning on Persian texts. 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, (lCEE20 17), 1503–1508. doi.org/10.1109/IranianCEE.2017.7985281
Ruder, S., Ghaffari, P., Breslin, J. G. (2016). A hierarchical model of reviews for aspect-based sentiment analysis. EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings, 999–1005. doi.org/10.18653/v1/d16-1103
Sahar, N., Irshad, M., Khan, M. (2018). Bayesian Sentiment Analytics for Emerging Trends in Unstructured Data Streams. ICST Transactions on Scalable Information Systems, 0 (0), 159355. doi.org/10.4108/eai.13-7-2018.159355
Seth, R. D. M. (2015). Weighted Sentiment Analysis Using Artificial Bee Colony Algorithm. International Journal of Science and Research (IJSR), 4 (8), 1717–1722. Retrieved from www.ijsr.net/archive/v4i8/SUB157637.pdf
Shafique, U., Campus, L. (2014). A Comparative Study of Data Mining Process Models (KDD , CRISP-DM and A Comparative Study of Data Mining Process Models (KDD , CRISP-DM and SEMMA), (November).
Singh, N. K., Tomar, D. S., Sangaiah, A. K. (2018). Sentiment analysis: a review and comparative analysis over social media. Journal of Ambient Intelligence and Humanized Computing, 0 (0), 1–21. doi.org/10.1007/s12652-018-0862-8
Tan, S., Wang, Y., Cheng, X. (2008). Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples, 743. doi.org/10.1145/1390334.1390481
Vu, H. Q., Li, G., Law, R., Zhang, Y. (2019). Exploring Tourist Dining Preferences Based on Restaurant Reviews. Journal of Travel Research, 58 (1), 149–167. doi.org/10.1177/0047287517744672
Wang, Y., Huang, M., Zhao, L., Zhu, X. (2016). Attention-based LSTM for aspect-level sentiment classification. EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings, 606–615. doi.org/10.18653/v1/d16-1058
Yan, X., Wang, J., Chau, M. (2015). Customer revisit intention to restaurants: Evidence from online reviews. Information Systems Frontiers, 17 (3), 645–657. doi.org/10.1007/s10796-013-9446-5
Yu, B., Zhou, J., Zhang, Y., Cao, Y. (2017). Identifying Restaurant Features via Sentiment Analysis on Yelp Reviews, 1–6. Retrieved from http://arxiv.org/abs/1709.08698
Yue, L., Chen, W., Li, X., Zuo, W., Yin, M. (2018). A survey of sentiment analysis in social media. Knowledge and Information Systems, 1–47. doi.org/10.1007/s10115-018-1236-4
Zhang, Z., Ye, Q., Zhang, Z., Li, Y. (2011). Expert Systems with Applications Sentiment classification of Internet restaurant reviews written in Cantonese. Expert Systems With Applications, 38 (6), 7674–7682. doi.org/10.1016/j.eswa.2010.12.147
Zuheros, C., Martínez-cámara, E., Herrera-viedma, E., Herrera, F. (2021). Sentiment Analysis based Multi-Person Multi-criteria Decision Making methodology using natural language processing and deep learning for smarter decision aid. Case study of restaurant choice using TripAdvisor reviews. Information Fusion, 68 (November 2020), 22–36. doi.org/10.1016/j.inffus.2020.10.019
Abbasi, F., Sohrabi, B., Manian, A., Khadivar, A. (2017). A Model to Classify Book Buyers’ Sentiments Using Ensemble Approach, Journal of Business Intelligence Management Studies, 6(21), 65-92. doi.org/10.22054/ims.2018.8512. [In Persian]
Dami, S., Mohammadi Sotoudeh, A. (2018). Opinion Mining in Tourism by supervised learning. In Computer Engineering Information Technology Conference, Islamic Azad University of Sepidan, Iran. [In Persian]
Elahi, S., Khadivar, A., Hasanzadeh, A. (2011). Designing a Decision Support Expert System for Supporting the Process of Knowledge Management Strategy Development. Journal of Information Technology Management, 3(8), 43-62. [In Persian]
Hatami Naghani, B., & Abessi, M. (2017). Content Analysis of Science Paper’s by Using Text Mining. IT Management Studies5(18), 137-167. / doi. rg 10.22054/IMS.2021.50853.1697 [In Persian]
Khadivar, A., Abasi, F. (2016). KM Maturity assessment in 300 top Iranian company. Modern Research in Decision Making, 1(3), 23-42. [In Persian]
Rahimi, F., Vahid, M., & Ghanbar, N. (2021). Branch Client Behavior Analysis Using RFM Method. Journal of Business Intelligence Management Studies36, 209-242. doi. rg/10.22054/IMS.2021.50853.1697 [In Persian]