مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای رشته مدیریت فناوری اطلاعات گرایش کسب و کار هوشمند، گروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم

2 دکترای مدیریت تولید و عملیات، عضو هیئت علمی (استاد تمام) گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

3 دکترای مدیریت صنعتی، عضو هیئت علمی (استاد تمام) و مدیرگروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات،

4 عضو هیئت علمی (دانشیار) گروه مدیریت فناوری اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

حفظ مشتری یکی از پراهمیت‌ترین مسائل هر سازمانی می‌باشد و یافتن راهی جهت حفظ و بقای مشتری از نیازهای کلیدی آن سازمان است. هدف اصلی پژوهش حاضر، در حوزه یادگیری ماشین با تمرکز بر شناسایی صحیح نیازهای مشتری با روشی مبتنی بر استخراج دیدگاه‌ها و تحلیل احساسات و کمی سازی گرایش احساسی مشتریان در مورد خدمات بانکی با بررسی و تحلیل نظرات آن‌ها می‌باشد. به‌عبارتی موضوع این پژوهش طراحی سیستم توصیه‌گر جهت ارائه خدمات مناسب به مشتریان، با استفاده از عقاید و تجارب آن‌ها می‌باشد. روش اجرای ارائه شده در پژوهش حاضر بدین ترتیب است که، با بررسی عقاید مشتریان و استخراج متغیرهایی چون نمره احساسات افراد برای توییت‌ها، نمره ارتباط، شباهت کسینوسی و میزان ضریب اطمینان در قالب فرآیند آموزش و تست، خدمات بانکی مناسب را پیشنهاد می‌دهد. به‌منظور ارائه این پیشنهاد، از روش‌های دسته‌بندی مناسب به‌همراه روش‌های عقیده‌کاوی و رویکرد اعتبارسنجی مناسب استفاده می‌شود و سیستم طراحی‌شده نهایی با خطایی اندک، جهت ارائه خدمات شخصی‌سازی‌شده، در راستای کمک به مدیران بانکی گام خواهد برداشت. ازآنجاییکه درحال حاضر ارائه خدمات بانکی متناسب با وضعیت مشتریان به‌طورکامل وجود ندارد، لذا سیستم مذکور در این زمینه بسیار راهگشا خواهد بود.

کلیدواژه‌ها

عنوان مقاله [English]

Design of a Banking Personalized Recommender System using Sentiment Analysis in Social Media

نویسندگان [English]

  • Mehregan Ghobakhloo 1
  • Ali Rajabzadeh Ghatari 2
  • Abbas Toloie Eshlaghy 3
  • Mahmood Alborzi 4

1 PhD Candidate of Information Technology Management (BI), Department of Management and Economics, Science and Research Branch, Islamic Azad university, Tehran, Iran .Address: Science and Research Branch, Islamic Azad university, Tehran, Iran

2 PhD in Production Management, Faculty Member (Full Professor), Department of Management and Economics, Tarbiat Modares University, Tehran, Iran. Address: Tarbiat Modares University, Tehran, Iran

3 PhD in Industrial Management, Faculty Member (Full Professor), Department of Management and Economics, Science and Research Branch, Islamic Azad university, Tehran, Iran

4 PhD in Neural Networks, Faculty Member (Associate Professor), Department of Management and Economics, Science and Research Branch, Islamic Azad university, Tehran, Iran.

چکیده [English]

Customer retention is an important issue for any organization, so finding a way to retain the customer is one of the critical needs of any organization. In this regard, the goal in the field of machine learning is focusing on the problem of accurate customer needs with a method based on extracting opinion and sentiment analysis and quantifying customers' emotional orientation.
In the other words, the issue is designing a recommender system to provide appropriate services to customers, using their opinions and experiences. The proposed solution, by receiving and reviewing customers' opinions and experiences in the form of extracting variables such as user sentiment score for tweets, relation score, cosine similarity, and confidence factor, and considering groups of relevant features and registration ideas in the process of training and testing, the result is presented in the form of a banking service suitable offer. In order to provide a recommending solution, appropriate classification methods are used along with opinion mining methods and an appropriate validation approach, and the final designed system with a small error, in order to provide personalized services, will step in to help bank managers.
Since currently there is no complete provision of banking services tailored to the situation of customers, so in this regard, this mentioned system will be very helpful.

کلیدواژه‌ها [English]

  • Customer Opinion
  • Customer Satisfaction
  • Recommender System
  • Banking
  • Personalization
آسوشه، عباس؛ باقرپور، ساناز؛ یحیی پور، نجمه. (1387). توسعه مدل‌هایی برای انطباق سیستم توصیه‌گر، مورد مطالعه خرده‌فروشی و خدمات بانکی در ایران.معاملات WSEAS در تجارت و اقتصاد. (5)5، 189-200.
بحرینی زاده، منیژه؛ اسماعیل پور، مجید؛ کبوتری، جمال الدین. (1396). ارزیابی و رتبه بندی مولفه های کیفیت خدمات الکترونیک موثر بر رضایتمندی و قصد استفاده مشتریان. مطالعات مدیریت کسب و کار هوشمند. (22)6، 49-74. doi: 10.22054/ims.2018.8520
برهانی زرندی، سمیه؛ نیک نفس، علی اکبر؛ محمدی، مجید. (1392). عقیده کاوی در نقد کالا با استفاده از شبکه واژگان احساسی. دومین کنفرانس ملی مهندسی صنایع و سیستم ها. COI: NIESC02_082
جعفری نایمی­پور. نیما. (1397). سیستم‌های توصیه‌گر: مروری نظام‌مند از وضعیت ادبیات و پیشنهادات برای تحقیقات آینده. مجله بین‌المللی سایبرنتیک، سیستم‌ها و علوم مدیریت. (5)47، 985-1017.
روحانی. سعید، زندوکیلی. رامین، انصاری، منوچهر. (1397). طراحی و ایجاد سامانه توصیه­گر برچسب محور بر مبنای شبکه­های عصبی عمیق. پژوهش­های نوین در تصمیم­گیری. (2)، 155-174.
زارعی، عظیم. (1395). طراحی مدل ساختاری ریزش مشتری در بانک­های دولتی (مورد مطالعه: بانک­های منتخب دولتی شهر سمنان). پژوهش­های مدیریت در ایران. (1)21، 151-176 doi:10.30473/JSM.2019.45341.1314
سلیمانی روزبهانی. فاطمه، رجب­زاده قطری، علی. رادفر، رضا. (1398). کشف دانش از مطالعات بیش از یک دهه بر روی سیستم­های کلان داده حوزه سلامت . فصلنامه کلان داده. 6، 1-15.
سهرابی. بابک، رئیسی وانانی. ایمان، زارع میرک آباد، فائزه. (1395). طراحی سیستم توصیه­گر به منظور بهینه­سازی و مدیریت تسهیلات بانکی بر مبنای الگوریتم­های خوشه­بندی و طبقه­بندی تسیهلات. پژوهش­های نوین در تصمیم­گیری. (2) 1 ، 53-76.
کریمی علویجه. محمدرضا؛ عسگری. شیوا؛ پرسته سیروان. (1394). فروشگاه اینترنتی هوشمند: سیستم پیشنهاددهنده مبتنی بر تحلیل رفتار کاربران. فصلنامه مدیریت فناوری اطلاعات. (2)7، 406-385. doi: 10.22059/jitm.2015.53884
کریمیان. سمانه؛ کارگر. محمدجواد. (1394). کمی سازی گرایش احساسی نظرات متنی فارسی مشتریان بر روی ویژگی های کالا در وب. اولین کنفرانس بین المللی وب پژوهی.
­References
Chen Y.-L. and Cheng L.-C. (2008). A novel collaborative filtering approach for recommending ranked items", Expert systems with applications. vol. 34. 2396-2405. doi.org/10.1016/j.eswa.2007.04.004
Chao Ma., Xun Liang. (2015). Online mining in unstructured financial information. An empirical study in bulletin news. DOI: 10.1109/ICSSSM.2015.7170151
Cornelis C., Lu J., Guo X., and Zhang G. (2007). One-and-only item recommendation with fuzzy logic techniques. Information sciences. j.ins.07.001. vol. doi:10.1016. doi.org/10.1016/j.ins.2007.07.001
Garg, R., Rahman, Z., Qureshi, M., & Qumar, I. (2012). Identifying and ranking critical success factors of customer experience in banks: An analytical hierarchy process (AHP) approach. Modeling in Management. 201-220.    DOI: 10.1108/17465661211242813
Janiesch, C., Zschech, P. & Heinrich, K. (2021). Machine learning and deep learning. ElectronMarkets. doi:10.1007/s12525-021-00475-2
Jin, J., P. Ji and R. Gu. (2016). Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence. 49. 61-73. doi.org/10.1016/j.engappai.2015.12.005
Kangas, S. (2002). Collaborative filtering and recommendation systems. in: VTT information technology. Espoo: VTT.
Kim, Y. S., Yum, B. J., Song, J. & Kim, S. M. (2005). Development of a recommender system based on navigational and behavioral patterns of customers in e-commerce sites", Expert Systems with Applications. 28(1). 381-393. doi.org/10.1016/j.eswa.2004.10.017
Kompan, M. & Bieliková, M. (2010). Content-based news recommendation. International Conference on Electronic commerce and web technologies (EC-Web 2010). University of Deusto, Bilbao. DOI: 10.1007/978-3-642-15208-5_6
Li Y., Lu L., and Xuefeng L. (2005). A hybrid collaborative filtering method for multiple-interests and multiplecontent recommendation in E-Commerce. Expert systems with applications. vol. 28. 67-77. doi.org/10.1016/j.eswa.2004.08.013
Liu, B., M. Hu and J. Cheng. (2005). Opinion observer: analyzing and comparing opinions on the Web", Proceedings of the 14th international conference on World Wide Web. Chiba, Japan, ACM. 342-351. DOI:10.1145/1060745.1060797
Marrese-Taylor, E., J. D. Velásquez and F. Bravo-Marquez. (2014). A novel deterministic approach for aspectbased opinion mining in tourism products reviews. Expert Systems with Applications 41(17). 7764-7775. doi.org/10.1016/j.eswa.2014.05.045
Martín-Guerrero, J. D. & Lisboa, P. J. & Soria-Olivas, E. & Palomares, A. & Balaguer, E. (2007). An approach based on the Adaptive Resonance Theory for analyzing the viability of recommender systems in a citizen Web portal". Expert Systems with Applications. 33(3). 743-753. doi.org/10.1016/j.eswa.2006.06.013
Miles, M.B.& Hubermn, A.M. (2017). Qualitative Data Analysis – A Source of New Methods. California. Sage.
Wang, Z., Sun, L., Zhu, W., Yang, S., Li, H. & Wu, D. (2013). Joint social and content recommendation for user-generated videos in online social network. IEEE Transactions on Multimedia. 15(3). 698-709. DOI: 10.1109/TMM.2012.2237022
Xiaoming Yang Peng Tian Zhen Zhang. (2019). A Comparative Study on Several National Customer Satisfaction Indices (CSI) Aetna School of Management,Shanghai Jiao Tong University. Shanghai. P.R.China.p2 Corpus ID: 202588018
Yin, D. & Hong, L. & Davison, B. D. (2011). Structural link analysis and prediction in microblogs. Proceedings of the 20th ACM international conference on Information and knowledge management. Glasgow. 24-28. doi.org/10.1145/2063576.2063743
­ ­References [In persian]
Asosheh, A., Bagherpour, S. Yahyapour, N. (2008). Extended acceptance models for recommender system adaption, case of retail and banking service in Iran. WSEAS transactions on business and economics. 5(5). 189-200.
Bahrinizadeh, M., Esmailpour, M., Kaboutari, J. (2017). Evaluating and Ranking the Quality Components of E-Services Affecting Customer Satisfaction and Intent. Journal of Busines Intelligence Management Studies. 6 (22), 49-74. doi: 10.22054 / ims.2018.8520
Borhani Zarandi, S., Niknafas, Mohammadi. (2013). Opinion mining in product review by using emotional vocabulary. 2nd national conference on Industrial & Systems Engineering. Islamic Azad University of Najafabad. COI: NIESC02_082
Jafari Navimipour, N. (2018), "Recommender systems: A systematic review of the state of the art literature and suggestions for future research", Kybernetes, (5) 47, 985-1017.
Karimi Alavije, M., Askari, S. & Parasite, S. (2015). Intelligent Online Store: User Behavior Analysis based Recommender System. Journal of Information Technology Management. 7(2). 385-406. doi: 10.22059/jitm.2015.53884
Karimian, S., Karegar, M. (2012). Quantifying the emotional tendency of Persian-language customer comments on the features of the product on the Web. 1st international conference of web research, Knowledge and Culture University.
Rouhani S., Zandvakili R., Ansari M, (2018). Design and Implementation of a Tag-oriented Recommender System Based on Deep Neural Networks. Journal of Modern Research in Decision Making (3) 2.155-174.
Sohrabi, B., Raeesi Vanani, I., Zareh Mirkabad, F. (2016). Designing a Recommender System for Optimizing and Managing Bank Facilities through the Utilization of Clustering and Classification Algorithms. Modern Research in Decision Making. 1(2). 53-76.
Soleimani-Roozbahani F., Rajabzadeh Ghatari A., Radfar R. (2018). Knowledge discovery from a more than a decade studies on healthcare Big Data systems: a scientometrics study. Journal of Big Data. doi: https://doi.org/10.1186/s40537-018-0167-y. vol. 6. pages.8
Zarei A. (2015). Developing a Structural Model for Customer Churn in Governmental Banks: Case of Semnan Governmental Banks. Journal of Management Research in Decision Making. Vol. (21)1. 151-176. DOI:10.30473/JSM.2019.45341.1314
 
استناد به این مقاله: قباخلو، مهرگان.، رجب‌زاده قطری، علی.، طلوعی اشلقی، عباس.، البرزی، محمود. (1401). طراحی سیستم پیشنهاد بانکی فردی با استفاده از تجزیه و تحلیل احساسات در رسانه‌های اجتماعی ، مطالعات مدیریت کسب وکار هوشمند، 10(39)، 257-289.
DOI: 10.22054/IMS.2021.59775.1932
 Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..