مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت بازرگانی دانشگاه علامه طباطبائی

2 عضو هیئت علمی دانشگاه علامه طباطبائی

3 دانشیار دانشگاه علامه طباطبایی / دانشکده مدیریت /گروه مدیریت صنعتی

4 مدیریت بازرگانی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی تهران

چکیده

ارائه اطلاعات ارزشمند در قالب محتوای جذاب و تعامل با مشتریان مهم ترین عناصر بازاریابی محتوا می باشد که از مقدمات ایجاد درگیری است. مهم ترین مسئله در موفقیت بازاریابی محتوا، پاسخ درست به این سئوال است که چه عواملی موجب درگیر شدن مخاطب با محتوا خواهد شد. با وجود پژوهش های بسیاری که در زمینه شناسایی ابعاد درگیری و عوامل انگیزاننده مخاطبان برای درگیر شدن با محتوا انجام گردیده، کماکان درگیری مخاطبان از جمله دغدغه های فعالان در حوزه بازاریابی محتوا است و در جستجوی روش های موثر برای شناسایی عوامل موثر بر ارتقای سطح درگیری مخاطبان می باشند. پژوهش حاضر با استفاده از روش فراترکیب بر اساس مدل سندلوسکی و بارسو (2007) به شناسایی شاخص های تاثیرگذار بازاریابی محتوا بر ارتقای درگیری مخاطبان پرداخته است. به این منظور، 537 مقاله در بازه زمانی سال های 2003-2021 یافت شد و در هر مرحله مقالاتی که معیارهای مورد نظر را کسب نکردند از پژوهش کنار گذاشته شد. در نهایت، یافته های 45 مقاله انتخاب گردید. با طبقه بندی کدهای شناسایی شده، 23مقوله را در 4 بعد شامل مقوله های شناسایی درگیری، مقوله های مربوط به ویژگی های محتوا، مقوله های مربوط به نویسنده محتوا و مقوله های مربوط به واکنش سایر کاربران شناسایی شد. از میان تمامی مقوله های شناسایی شده، امکان شخصی سازی محتوا برای هر مخاطب، احساسات نهفته در محتوا و تاریخ انتشار محتوا، نحوه عضویت نویسنده و هویت وی در جامعه آنلاین بالاترین اولویت ها را از آن خود ساختند.

کلیدواژه‌ها

عنوان مقاله [English]

Identifying Indicators of Digital Content Management for Increasing the Engagement of users in digital space, Using Meta-Synthesis Method

نویسندگان [English]

  • Mohammad Saleh Torkestani 1
  • Zohreh Dehdashti Shahrokh 2
  • Iman Raeesi Vanan 3
  • Fatemeh Golshan 4

1 Associate Professor, ATU, Tehran, Iran

2 Marketing, Management and accounting, Allameh Tabataba'i university

3 ATU

4 Faculty of management and accounting, Allameh Tabatabai

چکیده [English]

Providing valuable information in the form of attractive content and interaction with customers is one of the most important elements of content marketing. The most important factor in the success of content marketing is answering to the question of what causes the audience to engage in content. Despite numerous researches in the field of identifying the dimensions of engagement and motivators of audiences to engage with content, the audience engagement is still one of the most important concerns of actors in the field of content marketing and they are looking for effective ways to identify factors affecting the promotion of audiences' engagement. The present study, using Meta - synthesis method based on the Sandelowski and Barros (2007) model, identifies influential indicators of content marketing on promoting the audience engagement. For this purpose, studies according to years 2003 – 2019 were collected and the papers that did not obtain the intended criteria were excluded from the study. Finally, the findings of 45 papers were selected. By classification of identified codes, 23 categories were identified in 4 dimensions including engagement, categories related to content features, categories related to content writer and other user's reactions. Among all identified categories, the possibility of content personalization for each audience, the sentiment embedded in content and the history of content, the membership level of writer and his/her identity in the online community made the highest priority.

کلیدواژه‌ها [English]

  • Content
  • Content Marketing
  • Engagement
  • Digital Engagement
  • Meta-synthesis
پیکری، ناصر، یعقوبی، سیدعلی اصغر و طاهری، حمیدرضا. ( ۱۳۹۴). تحلیل احساسات در شبکه اجتماعی توییتر با تکنیک متن کاوی. اولین کنفرانس بین المللی وب پژوهی، تهران، دانشگاه علم و فرهنگ.
عرب، سید محمد، ابراهیم زاده پزشکی، رضا و مروتی شریف آبادی، علی. (1393). طراحی مدل فرا ترکیب عوامل مؤثر بر طلاق با مرور نظام‌مند مطالعه‌های پیشین. مجله تخصصی اپیدمیولوژی ایران، 10 (4)، 10-22.‎ http://irje.tums.ac.ir/article-1-5286-fa.html
عابدی‌جعفری، عابد و امیری، مجتبی. (1398). فرا ترکیب، روشی برای سنتز مطالعاتکیفی. حوزه و دانشگاه روش شناسی علوم انسانی, 25 (99)، 73-87.‎
عباسی، فاطمه، سهرابی، بابک، مانیان، امیر و خدیور، آمنه. (1396). ارائه مدلی جهت دسته‌بندی احساسات خریداران کتاب با استفاده از رویکرد ترکیبی. مطالعات مدیریت کسب و کار هوشمند.6(21)، 65-92. doi: 10.22054/ims.2018.8512
سهرابی، بابک، رئیسی وانانی، ایمان و خداپرست، فرشته. (1395). تحلیل نظرات کاربران وب سایت های تجارت اجتماعی بر اساس روش های متن کاوی و داده کاوی. مجله جهانی رسانه-نسخه فارسی, 11(2), 163-179.
https://gmj.ut.ac.ir/article_66476.html?lang=fa
ماهری، مهنوش و حسینی، منیره. (1393). بررسی تاثیرات بازاریابی دهان به دهان الکترونیکی بر نام تجاری در ایران: شبکه نگاری یک انجمن اینترنتی. پژوهش های مدیریت در ایران, 18(4), 139-159.
https://www.sid.ir/fa/journal/ViewPaper.aspx?id=272445
نظری عامله، کیانوش، جعفری، پژمان و غفاری، فرهاد. (1397). استراتژی‌های محتوا در شبکه‌های اجتماعی: جوامع برند سلامت محور در ایران. مدیریت بهداشت و درمان.9،(2)، 49-58.‎
References
AL-Rubaiee, H., Alomar, K., Qiu, R., Li, D. (2018) Tuning of Customer Relationship Management (CRM) via Customer Experience Management (CEM) using sentiment analysis on aspects level, International Journal of Advanced Computer Science and Applications, 9 (5), pp.300-312. https://doi.org/10.14569/IJACSA.2018.090540
Bailie, R. A., & Urbina, N. (2013). Content strategy: Connecting the dots between business, brand, and benefits. Xml Press.
Baltes, L. P. (2015). Content marketing-the fundamental tool of digital marketing. Bulletin of the Transilvania University of Brasov. Economic Sciences. Series V, 8 (2), 111. http://webbut2.unitbv.ro/BU2015/series%20v/BILETIN%20I/15_Patrutiu.pdf
Besbes, O., Gur, Y., & Zeevi, A. (2016). Optimization in online content recommendation services: Beyond click-through rates. Manufacturing & Service Operations Management, 18(1), 15-33. https://doi.org/10.1287/msom.2015.0548.
Brown-Peterson, A. J. (2017). Successful Facebook marketing strategies by Missouri small businesses: A qualitative case study (Doctoral dissertation, Northcentral University). https://www.proquest.com/openview/b52482fb112f4cdcbc8e52ec59460134/1?pq-origsite=gscholar&cbl=18750
Carbone, P., & Vlassov, V. (2015, September). Auto-Scoring of Personalised News in the Real-Time Web: Challenges, Overview and Evaluation of the State-of-the-Art Solutions. In 2015 International Conference on Cloud and Autonomic Computing (pp. 169-180). IEEE. DOI: 10.1109/ICCAC.2015.9
Chan, T. K., Zheng, X., Cheung, C. M., Lee, M. K., & Lee, Z. W. (2014). Antecedents and consequences of customer engagement in online brand communities. Journal of Marketing Analytics, 2 (2), 81-97. Dio: 10.1057/jma.2014.9.
Chen, Q., & Wells, W. D. (1999). Attitude toward the site. Journal of advertising research, 39 (5), 27-38. https://link.gale.com/apps/doc/ A111508662/AONE?u=anon~cb454905&sid=googleScholar&xid=8facfc96
Confetto, M. G., Siano, A. (2018). Social media content: a management framework. Int. J. Bus. Manag., 13(6), 84-95. doi:10.5539/ijbm.v13n6p84
Darzentas, J. S. (2008). The design of accessible, usable and meaningful content. Volume 1: Explanatory Essay. (Unpublished Doctoral thesis, City University London). https://openaccess.city.ac.uk/id/eprint/19637
Denham-Smith, J., & Harvidsson, P. (2017). Content Marketing’s effect on customer engagement. https://www.semanticscholar.org/paper /Content-Marketing%E2%80%99s-effect-on-customer-engagement-Denham-SmithHarvidsson/a248f6b218177d5b61f5d2289d11d9f1f9bc0446
Dixon-Woods, M., Shaw, R. L., Agarwal, S., & Smith, J. A. (2004). The problem of appraising qualitative research. BMJ Quality & Safety, 13(3), 223-225. http://dx.doi.org/10.1136/qshc.2003.008714
Eisend, M., van Reijmersdal, E. A., Boerman, S. C., & Tarrahi, F. (2020). A meta-analysis of the effects of disclosing sponsored content. Journal of Advertising, 49 (3), 344-366. https://doi.org/10.1080/00913367.2020.1765909
Eyler-Werve, S., Frick, K., & Tim, T. (2015). Return on engagement content strategy and web design techniques for digital marketing.Focal Press Higgins ET. Value from hedonic experience and engagement. Psychological review, 2006; 113 (3): 439. https://doi.org/10.4324/9780240812847
Fdida, S., Antoniadis, P., A, (2014). survey on predicting the popularity of web content J. Internet Serv. Appl, 5(1), 1.
Fox, A. K. S. (2015). A multi-method examination of the effects of online reviews on consumer information processing and firm performance: A linguistic perspective. The University of Memphis. https://www.proquest.com/openview/d5585f14b161d01b9a4bdeac752488ed/1?pq-origsite=gscholar&cbl=18750
Ghose, A. & Todri - Adamopoulos, V. (2016). Toward a digital attribution model measuring the impact of display advertising on online consumer behavior. Management information systems: mis quarterly. 40(4), pp.889–910. https://www.jstor.org/stable/26629681.
Ghose, A., Ipeirotis, P. G., & Li, B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing Science, 31(3), 493-520. https://doi.org/10.1287/mksc.1110.0700
Helsper, E. J., & Eynon, R. (2013). Distinct skill pathways to digital engagement. European Journal of Communication, 28(6), 696-713. https://doi.org/10.1177/0267323113499113
Hollebeek, L. D., & Macky, K. (2019). Digital Content Marketing’s Role in Fostering Consumer Engagement, Trust, and Value: Framework, Fundamental Propositions, and Implications. Journal of Interactive Marketing, 45, 27–41. https://doi.org/10.1016/j.intmar.2018.07.003.
Holliman, G., & Rowley, J. (2014). Business to business digital content marketing: marketers’ perceptions of best practice. Journal of Research in Interactive Marketing, 8(4), 269-293. https://doi.org/10.1108/jrim-02-2014-0013
Ho.H.E, J. Y., & Dempsey, M. (2010). Viral marketing: Motivations to forward online content. Journal of Business research, 63(9-10), 1000-1006. https://doi.org/10.1016/j.jbusres.2008.08.010
Hwang, Y., Jeong, J. (2016). Electronic commerce and online consumer behavior research: A literature review. Information Development 2016, 32(3), pp. 377–388. https://doi.org/10.1177/0266666914551071
Jahn, B., & Kunz, W. (2012). How to transform consumers into fans of your brand. Journal of Service Management. doi/10.1108/09564231211248444
Jensen, L. A., & Allen, M. N. (1996). Meta-synthesis of qualitative findings. Qualitative health research, 6(4), 553-560. https://doi.org/10.1177/104973239600600407
Jeong, M., & Lambert, C. U. (2001). Adaptation of an information quality framework to measure customers’ behavioral intentions to use lodging Web sites. International Journal of Hospitality Management, 20 (2), 129-146.  https://doi.org/10.1016/S0278-4319(00)00041-4.
Johnson-Eilola, J. (2001). Little machines: Understanding users understanding interfaces. ACM Journal of Computer Documentation (JCD), 25(4), 119-127.  https://doi.org/10.1145/586569.586571
Khandelwal, M., Sharma, A., Deepika Varshney, D., & Arti Dagur, A. (2018). To analyze Consumer Satisfaction level in Digital Content Marketing with Emphasis on Shopping Websites. International Journal of Engineering & Technology, 7(3.12), 637-642. doi:http://dx.doi.org/10.14419/ijet.v7i3.12.16444
Kim, K. (2016). The Dynamics of Online User Behavior and IS Policy Implications. ProQuest LLC. http://www.proquest.com/en-US/products/dissertations/individuals.shtml
Kumar, V., & Reinartz, W. (2018). Customer relationship management. Springer-Verlag GmbH Germany, part of Springer Nature 2006, 2012, 2018. Doi:10.1007/978-3-662-55381-7
Kwok, L., & Yu, B. (2016). Taxonomy of Facebook messages in business-to-consumer communications: What really works?. Tourism and Hospitality Research, 16(4), 311-328. https://doi.org/10.1177/1467358415600214
Liangfei, Q., Qian, T., & Andrew, B. W. (2015) Two Formulas for Success in Social Media: Learning and Network Effects. Journal of Management Information Systems, 32:4, 78-108, DOI: 10.1080/07421222.2015.1138368
Liu, C., Wang, W., Zhang, Y., Dong, Y., He, F., & Wu, C. (2017). Predicting the popularity of online news based on multivariate analysis. In 2017 IEEE International Conference on Computer and Information Technology (CIT) (pp. 9-15). IEEE. DOI: 10.1109/CIT.2017.36
Liu, X., Shi, S. W., Teixeira, T., & Wedel, M. (2018). Video Content Marketing: The Making of Clips. Journal of Marketing. 82 (4), 86-101. https://doi.org/10.1509/jm.16.0048
Liu, S., Perry, P., & Gadzinski, G. (2019). The implications of digital marketing on WeChat for luxury fashion brands in China. Journal of Brand Management, 26(4), 395-409. DOI: 10.1109/YAC.2019.8787653
Luca, M. (2016). Reviews, reputation, and revenue: The case of Yelp. com. Harvard Business School NOM Unit Working Paper, (12-016). http://dx.doi.org/10.2139/ssrn.1928601
Mittal, V., Kaul, A., Gupta, S. S., & Arora, A. (2017). Multivariate features based instagram post analysis to enrich user experience. Procedia computer science, 122, 138-145. https://doi.org/10.1016/j.procs. 2017.11.352
Moniz, N., Torgo, L., Eirinaki, M., & Branco, P. (2017). A framework for recommendation of highly popular news lacking social feedback. New Generation Computing, 35(4), 417-450. https://doi.org/10.1007/s00354-017-0019-x
Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS quarterly, 185-200. https://doi.org/10.2307/20721420
Ouyang, S., Li, C., & Li, X. (2016). A peek into the future: Predicting the popularity of online videos. IEEE Access, 4, 3026-3033 DOI:10.1109/ACCESS.2016.2580911
Peng, K. F., Fan, Y. W., & Hsu, T. A. (2004). Proposing the content perception theory for the online content industry–a structural equation modeling. Industrial Management & Data Systems, 104(6), 469-489. https:// doi.org/10.1108/02635570410543780
Perreault, M. C., & Mosconi, E. (2018, January). Social media engagement: Content strategy and metrics research opportunities. In Proceedings of the 51st Hawaii International Conference on System Sciences. Dio: 10.24251/HICSS.2018.451
Pulizzi, J. (2014). Epic content marketing: how to tell a different story, break through the clutter and win more customers by marketing less. mac graw hill.
Qiu, L., Tang, Q., & Whinston, A. B. (2015). Two formulas for success in social media: Learning and network effects. Journal of Management Information Systems, 32(4), 78-108. DOI: 10.1080/07421222.2015.1138368
Redish,J. (2012). Letting Go of the Words: Writing Web Content That Works. 2nd ed. San Mateo, CA, USA: Morgan Kaufmann, 2012.
Rossmann, A., Ranjan, K. R., & Sugathan, P. (2016). Drivers of user engagement in eWoM communication. Journal of Services Marketing. https://doi.org/10.1108/JSM-01-2015-0013
Rowley, J. (2008). Understanding digital content marketing. Journal of Marketing Management, 24 (5/6), 517-540. https://doi.org/10.1362/026725708x325977.
Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. https://doi.org/10.1016/j.dss.2015.10.006
Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S. G. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 101, 203-217. https://doi.org/10.1016/j.jbusres.2019.04.018
Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. springer publishing company.
Segall, R. S., & Zhang, Q. (2009). Web mining technologies for customer and marketing surveys. Kybernetes. https://doi.org/10.1108/ 03684920910973162
Sung, Y., Kim, Y., Kwon, O., & Moon, J. (2010). An explorative study of Korean consumer participation in virtual brand communities in social network sites. Journal of Global Marketing, 23(5), 430-445. https://doi.org/10.1080/08911762.2010.521115
Tantrabundit, P. (2015). How online review and rating systems affect online consumer buying behavior in the hotel industry (Doctoral dissertation, Alliant International University, Alliant School of Management, San Diego).
Tatar, A., De Amorim, M. D., Fdida, S., & Antoniadis, P. (2014). A survey on predicting the popularity of web content. Journal of Internet Services and Applications, 5(1), 1-20. https://doi.org/10.1186/s13174-014-0008-y
Tatar, A., Leguay, J., Antoniadis, P., Limbourg, A., de Amorim, M. D., & Fdida, S. (2011, May). Predicting the popularity of online articles based on user comments. In Proceedings of the International Conference on Web Intelligence, Mining and Semantics (pp. 1-8). https://doi.org/10.1145/1988688.1988766.
Trong Nhan, P. H. A. N., Truc Vi, H. O., & Viet Phuong, L. H. (2020). The Impact of Content Marketing on Customer Engagement on Instagram–a Case Study of Fashion Brands. International Journal of Management (IJM), 11(7). https://doi.org/10.34218/IJM.11.7.2020.076
Van Laer, T., Feiereisen, S., & Visconti, L. M. (2019). Storytelling in the digital era: A meta-analysis of relevant moderators of the narrative transportation effect. Journal of Business Research, 96, 135-146. https://doi.org/10.1016/j.jbusres.2018.10.053.
Wang, X., Mai, F., & Chiang, R. H. (2014). Database submission—market dynamics and user-generated content about tablet computers. Marketing Science, 33(3), 449-458. https://doi.org/10.1287/mksc.2013.0821
Yang, M., Kiang, M., & Shang, W. (2015). Filtering big data from social media--Building an early warning system for adverse drug reactions. Journal of biomedical informatics, 54, 230–240. https://doi.org/10.1016/j.jbi.2015.01.011
Yang, L. (2017). Effect of Product Review, Interactivity, Social Inequality, and Culture on Trust in Online Retailers: A Comparison Between China and the US. Bowling Green State University. https://www.proquest.com/openview/320fb49ec1608ea69906e6229108de2a/1?pq-origsite=gscholar&cbl=18750&diss=y
References [In Persian]
Abbasi, F., Sohrabi, B., Manian, A., & Khadivar, A. (2017). A Model to Classify Book Buyers’ Sentiments Using Ensemble Approach. Journal of Business Intelligence Management Studies, 6 (21), 65-92. doi: 10.22054/ims.2018.8512 [In Persian]
Abedi, Jafari, A., Amiri, A. (2019). Meta-Analysis, a method for synthesizing qualitative studies. Seminary and University of Humanities Methodology, 25 (99), 73-87. Doi:10.30471/MSSH.2019.1629 [In Persian]
Arab S, Ebrahimzadeh Pezeshki R, Morovati Sharifabadi A. Designing a Meta-Synthesis Model of Factors Affecting Divorce by Systematic Review of Previous Studies. irje. 2015; 10 (4) :10-22.
http://irje.tums.ac.ir/article-1-5286-fa.html [In Persian]
Maheri, M., & Hosseini, M. (2014). Investigating the Effects of Electronic Word-of-Mouth Marketing on Brand Name in Iran: Netnography of an internet forum. Management Researches in Iran. 18(4), 139-159..https://www.sid.ir/fa/journal/ViewPaper.aspx?id=272445 [In Persian]
Nazari, Amele, K., Jafari, P., Ghafari, S., (2018). Content Strategies in Social Networks: Health-Based Brand Communities in Iran. Health Management, 9, 49-58.  https://jhm.srbiau.ac.ir/article_ 12870.html?lang=fa [In Persian]
Peikari, N., Yaghubi, A, A. (2015). Semantic Analysis in Twitter Social Network with Text Mining Technique, First International Conference on Web Research, Tehran, University of Science and Culture. https://www.sid.ir/fa/seminar/ViewPaper.aspx?id=93319 [In Persian].
Sohrabi, B., Raeesi, Vanani, I., & Khodaparast, F. (2016). An Analytical Approach to Social Commerce Websites’ Consumer Reviews Based on Text and Data Mining Techniques. The Global Network of Communication Scholars. 11(2).163-179. https://gmj.ut.ac.ir/article_ 66476.html?lang=fa. [In Persian]