آذر، عادل.، فرجی، حجت. (1381). علم مدیریت فازی، تهران، اجتماع.
تقوی فرد، محمدتقی.، نادعلی، احمد. (1391). طبقهبندی متقاضیان تسهیلات اعتباری بانکی با استفاده از دادهکاوی و منطق فازی، فصلنامه مطالعات مدیریت صنعتی، 25، 85 - 108.
جلیلی، محمد.، خدایی وله زاقرد، محمد.، کنشلو، مهدیه. (1389). اعتبارسنجی مشتریان حقیقی در سیستم بانکی کشور، مطالعات کمی در مدیریت، 1 (3)، 127-148.
راعی، رضا.، فلاحپور، سعید (1387). کاربرد ماشین بردار پشتیبان در پیشبینی درماندگی مالی شرکتها با استفاده از نسبتهای مالی، بررسیهای حسابداری و حسابرسی، 15 (53)، 17-34.
رجبزاده قطری، علی.، میرزایی آرش، بهرام.، احمدی، پرویز. (1388). طراحی سیستم هوشمند ترکیبی رتبهبندی اعتباری مشتریان بانکها با استفاده از مدلهای استدلالی فازی ترکیبی، پژوهشنامه بازرگانی، 14 (53)، 159 - 201.
صالحی، مجتبی.، کرد کتولی، علیرضا. (1396). انتخاب ویژگیهای بهینه بهمنظور تعیین ریسک اعتباری مشتریان بانکی.
مطالعات مدیریت کسبوکار هوشمند،6 (22)، 129-154.
https://doi.org/10.22054/ims.2018.8523
قدسی پور، حسن.، سالاری، میثم .، دلاوری، وحید. (1391). ارزیابی ریسک اعتباری شرکتهای وامگیرنده از بانک با استفاده از تحلیل سلسله مراتبی فازی و شبکه عصبی ترکیبی درجه بالا، نشریه بینالمللی مهندسی صنایع و مدیریت تولید، 23 (1)، 43- 54.
نظامآبادیپور، حسین. (1392). الگوریتم وراثتی: مفاهیم پایه و مباحث پیشرفته، انتشارات دانشگاه شهید باهنر کرمان.
هاشمی تیله نویی، مصطفی.، حسینزاده، صبا. (1399). بررسی برتری مدل هیبریدی نسبت به سایر مدلها در فرایند اعتبارسنجی بانکهای کشور (مورد مطالعاتی برخی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران). نشریه اقتصاد و بانکداری اسلامی، 9 (31)، 173-204.
References
Abdou, H, Pointon, J, & El-Masry, A. (2008). Neural nets versus conventional techniques in credit scoring in Egyptian banking.
Expert systems with applications,
35 (3) 1275-1292.
https://doi.org/10.1016/j.eswa.2007.08.030
Abellán, J, Castellano, J. G. (2017). A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems with Applications, 73, 1-10. https://doi.org/ 10.1016/j.eswa.2016.12.020
Anderson, R. (2007). The credit scoring toolkit: theory and practice for retail credit risk management and decision automation. Oxford University Press.
Barani, F, Mirhosseini, M, & Nezamabadi-Pour, H. (2017). Application of binary quantum-inspired gravitational search algorithm in feature subset selection.
Applied Intelligence,
47, 304-318.
https://doi.org/10.1007/s10489-017-0894-3
Cao, A, He, H, Chen, Z, & Zhang, W. (2018). Performance Evaluation of Machine Learning Approaches for Credit Scoring. International Journal of Economics, Finance and Management Sciences, 6 (6), 255.
Chi, B. W, Hsu, C. C. (2012). A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model.
Expert Systems with Applications,
39 (3), 2650-2661.
https://doi.org/10.1016/j.eswa.2011.08.120
Dowlatshahi, M. B, Derhami, V, & Nezamabadi-pour, H. (2018). A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification. In
Informatics. 5 (1), p. 13. MDPI.
https://doi.org/10.3390/informatics5010013
Edla, D. R, Tripathi, D, Cheruku, R, & Kuppili, V. (2018). An efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysis.
Arabian Journal for Science and Engineering,
43 (12), 6909-6928.
https://doi.org/10.1007/s13369-017-2905-4
Fernandes, G. B, Artes, R. (2016). Spatial dependence in credit risk and its improvement in credit scoring.
European Journal of Operational Research,
249 (2), 517-524.
https://doi.org/10.1016/j.ejor.2015.07.013
Goh, R. Y, Lee, L. S. (2019). Credit scoring: a review on support vector machines and metaheuristic approaches.
Advances in Operations Research,
2019.
https://doi.org/10.1155/2019/1974794
Goh, R. Y, Lee, L. S, Seow, H. V, & Gopal, K. (2020). Hybrid Harmony Search–Artificial Intelligence Models in Credit Scoring.
Entropy,
22 (9), 989.
https://doi.org/10.3390/e22090989
He, H, Zhang, W, & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios.
Expert Systems with Applications,
98, 105-117.
https://doi.org/10.1016/j.eswa.2018.01.012
Huang, C. L, Chen, M. C, & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines.
Expert systems with applications,
33 (4), 847-856.
https://doi.org/10.1016/j.eswa.2006.07.007
Jeong, Y. W, Park, J. B, Jang, S. H, & Lee, K. Y. (2010). A new quantum-inspired binary PSO: application to unit commitment problems for power systems.
IEEE Transactions on Power Systems,
25 (3), 1486-1495.
https://doi.org/10.1109/TPWRS.2010.2042472
Kashef, S, Nezamabadi‐pour, H, & Nikpour, B. (2018). Multilabel feature selection: A comprehensive review and guiding experiments.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
8(2), e1240.
https://doi.org/10.1002/widm.1240
Koutanaei, F. N, Sajedi, H, & Khanbabaei, M. (2015). A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring.
Journal of Retailing and Consumer Services,
27, 11-23.
https://doi.org/10.1016/j.jretconser.2015.07.003
Lee, T. S, Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines.
Expert Systems with Applications,
28 (4) 743-752.
https://doi.org/10.1016/j.eswa.2004.12.031
Marqués, A. I, García, V, & Sánchez, J. S. (2012). Exploring the behaviour of base classifiers in credit scoring ensembles.
Expert Systems with Applications,
39 (11) 10244-10250.
https://doi.org/10.1016/j.eswa.2012.02.092
Mohammadi, F, Fathi, Z. (2016). The Study of the Effect of 5C Factors on the Credit Risk of Natural Customer of Refah e Kargaran Bank and Credit assessment. European Online Journal of Natural and Social Sciences: Proceedings, 4 (1 (s)), pp-1651.
Nanni, L, & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring.
Expert systems with applications,
36(2), 3028-3033.
https://doi.org/10.1016/j.eswa.2008.01.018
Schebesch, K. B, Stecking, R. (2005). Support vector machines for classifying and describing credit applicants: detecting typical and critical regions.
Journal of the operational research society,
56 (9), 1082-1088.
https://doi.org/10.1057/palgrave.jors.2602023
Siami, M, Hajimohammadi, Z. (2013). Credit scoring in banks and financial institutions via data mining techniques: A literature review.
Journal of AI and Data Mining,
1 (2) 119-129.
https://doi.org/10.22044/jadm.2013.124
Singh, S, Murthi, B. P. S, & Steffes, E. (2013). Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management.
European Journal of Operational Research,
224 (2) 425-434.
https://doi.org/10.1016/j.ejor.2012.08.007
Tomczak, J. M, Zięba, M. (2015). Classification restricted Boltzmann machine for comprehensible credit scoring model.
Expert Systems with Applications,
42 (4) 1789-1796.
https://doi.org/10.1016/j.eswa.2014.10.016
Xia, Y, Liu, C, Da, B, & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach.
Expert Systems with Applications,
93, 182-199.
https://doi.org/10.1016/j.eswa.2017.10.022
Yu, L, Wang, S, & Lai, K. K. (2008). Credit risk assessment with a multistage neural network ensemble learning approach.
Expert systems with applications,
34 (2) 1434-1444.
https://doi.org/10.1016/j.eswa.2007.01.009
Yu, L, Wang, S, & Lai, K. K. (2009). An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring.
European journal of operational research, 195 (3) 942-959.
https://doi.org/10.1016/j.ejor.2007.11.025
Yu, L, Yue, W, Wang, S, & Lai, K. K. (2010). Support vector machine based multiagent ensemble learning for credit risk evaluation.
Expert Systems with Applications,
37 (2) 1351-1360.
https://doi.org/10.1016/j.eswa.2009.06.083
Yu, L, Zhou, R, Tang, L, & Chen, R. (2018). A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data.
Applied Soft Computing,
69, 192-202.
https://doi.org/10.1016/j.asoc.2018.04.049
Zhang, X, Yang, Y, & Zhou, Z. (2018). A novel credit scoring model based on optimized random forest. In
2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 60-65). IEEE.
https://doi.org/10.1109/CCWC.2018.8301707
Zhao, Z, Xu, S, Kang, B. H, Kabir, M. M. J, Liu, Y, & Wasinger, R. (2015). Investigation and improvement of multi-layer perceptron neural networks for credit scoring.
Expert Systems with Applications,
42 (7), 3508-3516.
https://doi.org/10.1016/j.eswa.2014.12.006
References [In Persian]
Azar, A, Faraji, H. (2002). Fuzzy Management science, Ejtema. [In Persian].
Jalili, M, Khodaei, M, & Koneshlou, M. (2010). Validation of real customers in the country's banking system. Quantitative Researches in Management, 1 (3), 127-148. [In Persian].
Raei, R, Fallahpour, S. (2009). Support Vector Machines Application in Financial Distress Prediction of Companies Using Financial Ratios. Accounting and Auditing Review, 15(4), 17- 34. [In Persian].
Salehi, M, Korde Katooli, A. (2018). Optimal Feature Selection in order to Bank Customer Credit Risk Determination. BI Management Studies, 6(22), 129-154. [In Persian].
Ghodsipour, S. H, Salari, M, & Delavari, V. (2012). Using Fuzzy Analytic Hierarchy Process and Hybrid of Higher Order Neural Network for Evaluation Credit Risk of Corporate. International Journal of Industrial Engineering & Production Research, 23 (1), 43-54. [In Persian].
Nezamabadi-pour, H. (2013). Inheritance Algorithm: Basic Concepts and Advanced Topics, Publications of Shahid Bahonar University of Kerman. [In Persian].
Hashemi Tilehnouei, M, Hosseinzadeh, S. (2020). Investigating the Efficiency of Hybrid Model in Comparison with Logistic Regression and Artificial Neural Network in Credit Risk Evaluation of Companies Listed in Tehran Stock Exchange. Islamic Economics and Banking, 9 (31), 173-204. [In Persian].
استناد به این مقاله: قنبری، سلیمه.، نظامآبادیپور، حسین.، جلایی، سید عبدالمجید. (1401). بررسی شاخصهای اعتبارسنجی مشتریان بانکی با استفاده از روش هوش مصنوعی و دلفی،
مطالعات مدیریت کسب وکار هوشمند، 11(42)، 237-265.
DOI: 10.22054/IMS.2021.49698.1669
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..