حسینیان، امیرحسین، تیمورپور، بابک و جمالی هندری، باقر. (1398). توسعه یک روش فرا ابتکاری ترکیبی برای شناسایی اجتماعات در شبکههای اجتماعی باهدف چگالی پودمانگی. مطالعات مدیریت کسبوکار هوشمند.8(29).61-86. doi: 10.22054/ims.2019.10376
روحانی، سعید، امیریان، سمانه و محمدیان، ایوب. (1396). شناسایی و اولویتبندی کاربردهای شبکه کاوی در تجارت الکترونیکی. مطالعات مدیریت کسبوکار هوشمند.6(21).1-32. doi: 10.22054/ims.2018.8510
روشنی، سعید، رضایی نیک، نفیسه و شجاعی، سید محمدحسین. (1392). مطالعه مقایسهای قابلیت سازی و جامعهپذیری شبکههای اجتماعی عمومی و تخصصی. مطالعات مدیریت کسبوکار هوشمند.2(5).97-132.
شعار، مریم و سالارنژاد، علیاصغر. (1397). روشی جدید برای خوشهبندی اسناد HTML با استفاده از الگوریتمهای تلفیقی. مطالعات مدیریت کسبوکار هوشمند.6 (24).37-62.doi: 10.22054/ims.2018.8891
کوثری لنگری، روحالله، سردار، سهیلا، امین موسوی، سید عبدالله و رادفر، رضا. (1398). مدلی برای انتشار دادههای شبکههای اجتماعی برخط با حفظ حریم خصوصی. مطالعات مدیریت کسبوکار هوشمند.8(29).87-112. doi: 10.22054/ims.2019.10377
قاسم پور، محدثه، سیفی، عباس و علیزاده، حسین. (1392). تشخیص اجتماعات در شبکههای اجتماعی، دومین کنفرانس ملی مهندسی صنایع و سیستمها، اصفهان،https://civilica. com/doc/251290
References
Al-Andoli, M., Cheah, W. P., & Tan, S. C. (2021). Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters. Journal of Ambient Intelligence and Humanized Computing, 12 (2), 2527-2545.
Al-Andoli, M. N., Tan, S. C., Cheah, W. P., & Tan, S. Y. (2021). A Review on Community Detection in Large Complex Networks from Conventional to Deep Learning Methods: A Call for the Use of Parallel Meta-Heuristic Algorithms. IEEE Access, 9, 96501-96527.
Bhatia, V., & Rani, R. (2019). A distributed overlapping community detection model for large graphs using autoencoder. Future Generation Computer Systems, 94, 16-26.
Berahmand, K., Bouyer, A., & Vasighi, M. (2018). Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Transactions on Computational Social Systems, 5(4), 1021-1033.
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008 (10), P10008.
Cai, B., Wang, Y., Zeng, L., Hu, Y., & Li, H. (2020). Edge classification based on convolutional neural networks for community detection in complex network. Physica A: Statistical Mechanics and its Applications, 556, 124826.
Cao, J., Jin, D., & Dang, J. (2018, August). Autoencoder based community detection with adaptive integration of network topology and node contents. In International conference on knowledge science, engineering and management (pp. 184-196). Springer, Cham.
Cao, J., Jin, D., Yang, L., & Dang, J. (2018). Incorporating network structure with node contents for community detection on large networks using deep learning. Neurocomputing, 297, 71-81.
Chen, Z., Li, X., & Bruna, J. (2019). Supervised community detection with line graph neural networks. arXiv preprint arXiv:1705. 08415.
Choong, J. J., Liu, X., & Murata, T. (2019, December). Optimizing variational graph autoencoder for community detection. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 5353-5358). IEEE.
Dhilber, M., & Bhavani, S. D. (2020, January). Community detection in social networks using deep learning. In International conference on distributed computing and internet technology (pp. 241-250). Springer, Cham.
Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical review E, 72(2), 027104.
Fei, R., Sha, J., Xu, Q., Hu, B., Wang, K., & Li, S. (2020). A new deep sparse autoencoder for community detection in complex networks. EURASIP Journal on Wireless Communications and Networking, 2020 (1), 1-25.
Geng, X., Lu, H., & Sun, J. (2020). Network structural transformation-based community detection with autoencoder. Symmetry, 12 (6), 944.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826.
Guo, K., Zhang, P., Guo, W., & Chen, Y. (2022). An attentional-walk-based autoencoder for community detection. Applied Intelligence, 1-19.
He, D., Feng, Z., Jin, D., Wang, X., & Zhang, W. (2017, February). Joint identification of network communities and semantics via integrative modeling of network topologies and node contents. In Thirty-First AAAI Conference on Artificial Intelligence.
He, D., Song, Y., Jin, D., Feng, Z., Zhang, B., Yu, Z., & Zhang, W. (2021, January). Community-centric graph convolutional network for unsupervised community detection. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence (pp. 3515-3521).
Ivannikova, E., Park, H., Hämäläinen, T., & Lee, K. (2018). Revealing community structures by ensemble clustering using group diffusion. Information Fusion, 42, 24-36.
Jia, Y., Zhang, Q., Zhang, W., & ang, X. (2019, May). Communitygan: Community detection with generative adversarial nets. In The World Wide Web Conference (pp. 784-794).
Jin, D., Gabrys, B., & Dang, J. (2015). Combined node and link partitions method for finding overlapping communities in complex networks. Scientific reports, 5 (1), 1-8.
Jin, D., Ge, M., Li, Z., Lu, W., He, D., & Fogelman-Soulie, F. (2017, November). Using deep learning for community discovery in social networks. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 160-167). IEEE.
Jin, D., Liu, Z., Li, W., He, D., & Zhang, W. (2019, July). Graph convolutional networks meet markov random fields: Semi-supervised community detection in attribute networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 152-159).
Kanawati, R. (2014, August). YASCA: an ensemble-based approach for community detection in complex networks. In International Computing and Combinatorics Conference (pp. 657-666). Springer, Cham.
Li, Y., Han, Q., & Liu, J. (2019, November). Community Detection based on Autoencoder Reconstruction Similarity Matrix. In Journal of Physics: Conference Series (Vol. 1345, No. 3, p. 032055). IOP Publishing.
Liu, C., Liu, J., & Jiang, Z. (2014). A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE transactions on cybernetics, 44 (12), 2274-2287.
Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C.,... & Yu, P. S. (2020). Deep learning for community detection: progress, challenges and opportunities. arXiv preprint arXiv:2005. 08225.
Liu, R., Wang, H., & Yu, X. (2018). Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Information Sciences, 450, 200-226.
Liu, J. (2010, October). Comparative analysis for k-means algorithms in network community detection. In International Symposium on Intelligence Computation and Applications (pp. 158-169). Springer, Berlin, Heidelberg.
Lusseau, D., & Newman, M. E. (2004). Identifying the role that animals play in their social networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271 (suppl_6), S477-S481.
Mahmood, A., & Small, M. (2015). Subspace based network community detection using sparse linear coding. IEEE Transactions on Knowledge and Data Engineering, 28 (3), 801-812.
Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69 (6), 066133.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582.
Salehi, S. M., & Pouyan, A. A. (2020). Detecting overlapping communities in social networks using deep learning. International Journal of Engineering, 33 (3), 366-376.
Shchur, O., & Günnemann, S. (2019). Overlapping community detection with graph neural networks. arXiv preprint arXiv:1909. 12201.
Souravlas, S., Anastasiadou, S., & Katsavounis, S. (2021). A Survey on the Recent Advances of Deep Community Detection. Applied Sciences, 11 (16), 7179.
Sperlí, G. (2019, April). A deep learning based community detection approach. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (pp. 1107-1110).
Su, X., Xue, S., Liu, F., Wu, J., Yang, J., Zhou, C.,... & Yu, P. S. (2021). A Comprehensive Survey on Community Detection with Deep Learning. arXiv preprint arXiv:2105. 12584.
Tian, F., Gao, B., Cui, Q., Chen, E., & Liu, T. Y. (2014, June). Learning deep representations for graph clustering. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 28, No. 1).
Wang, F., Zhang, B., Chai, S., & Xia, Y. (2018). Community detection in complex networks using deep auto-encoded extreme learning machine. Modern Physics Letters B, 32 (16), 1850180.
Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., & Zhang, C. (2019). Attributed graph clustering: A deep attentional embedding approach. arXiv preprint arXiv:1906. 06532.
Wang, F., Zhang, B., & Chai, S. (2019). Deep auto-encoded clustering algorithm for community detection in complex networks. Chinese Journal of Electronics, 28 (3), 489-496.
Wu, L., Zhang, Q., Chen, C. H., Guo, K., & Wang, D. (2020). Deep learning techniques for community detection in social networks. IEEE Access, 8, 96016-96026.
Xie, Y., Gong, M., Wang, S., & Yu, B. (2018). Community discovery in networks with deep sparse filtering. Pattern Recognition, 81, 50-59.
Xie, Y., Wang, X., Jiang, D., & Xu, R. (2019). High-performance community detection in social networks using a deep transitive autoencoder. Information Sciences, 493, 75-90.
Xin, X., Wang, C., Ying, X., & Wang, B. (2017). Deep community detection in topologically incomplete networks. Physica A: Statistical Mechanics and its Applications, 469, 342-352.
Xu, R., Che, Y., Wang, X., Hu, J., & Xie, Y. (2020). Stacked autoencoder-based community detection method via an ensemble clustering framework. Information sciences, 526, 151-165.
Yang, J., McAuley, J., & Leskovec, J. (2013, December). Community detection in networks with node attributes. In 2013 IEEE 13th international conference on data mining (pp. 1151-1156). IEEE.
Yang, L., Cao, X., He, D., Wang, C., Wang, X., & Zhang, W. (2016, July). Modularity Based Community Detection with Deep Learning. In IJCAI (Vol. 16, pp. 2252-2258).
Yang, T., Jin, R., Chi, Y., & Zhu, S. (2009, June). Combining link and content for community detection: a discriminative approach. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 927-936).
Ye, F., Chen, C., & Zheng, Z. (2018, October). Deep autoencoder-like nonnegative matrix factorization for community detection. In Proceedings of the 27th ACM international conference on information and knowledge management (pp. 1393-1402).
Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33 (4), 452-473.
Zhang, Y., Xiong, Y., Ye, Y., Liu, T., Wang, W., Zhu, Y., & Yu, P. S. (2020, August). SEAL: Learning Heuristics for Community Detection with Generative Adversarial Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1103-1113).
References [In Persian]
Ghasempoor, M., Seifi, A., & Alizadeh, H. (2019). Recognition of communities in social networks. The second national industrial and systems engineering conference, Isfahan, https://civilica. com/doc/251290
Hosseinian, A. H., Teimourpour, B., & Jamali Hondori, B. (2019). A Hybrid Algorithm for Detecting Communities of Social Networks based on the Modularity Density Criterion. Business Intelligence Management Studies, 8(29), 61-86. doi: 10.22054/ims.2019.10376
Kosari Langari, R., Sardar, S., Amin Mousavi, S. A., & Radfar, R. (2019). A Model to Publish Online Social Networks Data with Privacy Preserving. Business Intelligence Management Studies, 8(29), 87-112. doi: 10.22054/ims.2019.10377
Rohan, S., Amirian, S., & Mohammadian, A. (2017). Identification and Ranking of Social Mining Applications in E-Commerce. Business Intelligence Management Studies, 6(21), 1-32. doi: 10.22054/ims.2018.8510
Roshani, S., Rezaeenik, N., & Shojaei, S. M. H. (2013). A comparative study of Usability and Sociability Of public and specialized social networking websites. Business Intelligence Management Studies, 2(5), 97-132.
Shoar, M., & Salarnezhad, A. A. (2018). A New Method to Cluster HTML Documents Using Mixed Algorithms. Business Intelligence Management Studies, 6(24), 37-62. doi: 10.22054/ims.2018.8891
استناد به این مقاله: حسینی، منیره.، گلوی، الناز. (1402). تشخیص اجتماع در شبکههای اجتماعی با رویکرد یادگیری عمیق،
مطالعات مدیریت کسب وکار هوشمند، 11(44)، 83-112.
DOI: 10.22054/ims.2023.66048.2125
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..
حسینیان، امیرحسین، تیمورپور، بابک و جمالی هندری، باقر. (1398). توسعه یک روش فرا ابتکاری ترکیبی برای شناسایی اجتماعات در شبکههای اجتماعی باهدف چگالی پودمانگی. مطالعات مدیریت کسبوکار هوشمند.8(29).61-86. doi: 10.22054/ims.2019.10376
روحانی، سعید، امیریان، سمانه و محمدیان، ایوب. (1396). شناسایی و اولویتبندی کاربردهای شبکه کاوی در تجارت الکترونیکی. مطالعات مدیریت کسبوکار هوشمند.6(21).1-32. doi: 10.22054/ims.2018.8510
روشنی، سعید، رضایی نیک، نفیسه و شجاعی، سید محمدحسین. (1392). مطالعه مقایسهای قابلیت سازی و جامعهپذیری شبکههای اجتماعی عمومی و تخصصی. مطالعات مدیریت کسبوکار هوشمند.2(5).97-132.
شعار، مریم و سالارنژاد، علیاصغر. (1397). روشی جدید برای خوشهبندی اسناد HTML با استفاده از الگوریتمهای تلفیقی. مطالعات مدیریت کسبوکار هوشمند.6 (24).37-62.doi: 10.22054/ims.2018.8891
کوثری لنگری، روحالله، سردار، سهیلا، امین موسوی، سید عبدالله و رادفر، رضا. (1398). مدلی برای انتشار دادههای شبکههای اجتماعی برخط با حفظ حریم خصوصی. مطالعات مدیریت کسبوکار هوشمند.8(29).87-112. doi: 10.22054/ims.2019.10377
قاسم پور، محدثه، سیفی، عباس و علیزاده، حسین. (1392). تشخیص اجتماعات در شبکههای اجتماعی، دومین کنفرانس ملی مهندسی صنایع و سیستمها، اصفهان،https://civilica. com/doc/251290
References
Al-Andoli, M., Cheah, W. P., & Tan, S. C. (2021). Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters. Journal of Ambient Intelligence and Humanized Computing, 12 (2), 2527-2545.
Al-Andoli, M. N., Tan, S. C., Cheah, W. P., & Tan, S. Y. (2021). A Review on Community Detection in Large Complex Networks from Conventional to Deep Learning Methods: A Call for the Use of Parallel Meta-Heuristic Algorithms. IEEE Access, 9, 96501-96527.
Bhatia, V., & Rani, R. (2019). A distributed overlapping community detection model for large graphs using autoencoder. Future Generation Computer Systems, 94, 16-26.
Berahmand, K., Bouyer, A., & Vasighi, M. (2018). Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Transactions on Computational Social Systems, 5(4), 1021-1033.
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008 (10), P10008.
Cai, B., Wang, Y., Zeng, L., Hu, Y., & Li, H. (2020). Edge classification based on convolutional neural networks for community detection in complex network. Physica A: Statistical Mechanics and its Applications, 556, 124826.
Cao, J., Jin, D., & Dang, J. (2018, August). Autoencoder based community detection with adaptive integration of network topology and node contents. In International conference on knowledge science, engineering and management (pp. 184-196). Springer, Cham.
Cao, J., Jin, D., Yang, L., & Dang, J. (2018). Incorporating network structure with node contents for community detection on large networks using deep learning. Neurocomputing, 297, 71-81.
Chen, Z., Li, X., & Bruna, J. (2019). Supervised community detection with line graph neural networks. arXiv preprint arXiv:1705. 08415.
Choong, J. J., Liu, X., & Murata, T. (2019, December). Optimizing variational graph autoencoder for community detection. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 5353-5358). IEEE.
Dhilber, M., & Bhavani, S. D. (2020, January). Community detection in social networks using deep learning. In International conference on distributed computing and internet technology (pp. 241-250). Springer, Cham.
Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical review E, 72(2), 027104.
Fei, R., Sha, J., Xu, Q., Hu, B., Wang, K., & Li, S. (2020). A new deep sparse autoencoder for community detection in complex networks. EURASIP Journal on Wireless Communications and Networking, 2020 (1), 1-25.
Geng, X., Lu, H., & Sun, J. (2020). Network structural transformation-based community detection with autoencoder. Symmetry, 12 (6), 944.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826.
Guo, K., Zhang, P., Guo, W., & Chen, Y. (2022). An attentional-walk-based autoencoder for community detection. Applied Intelligence, 1-19.
He, D., Feng, Z., Jin, D., Wang, X., & Zhang, W. (2017, February). Joint identification of network communities and semantics via integrative modeling of network topologies and node contents. In Thirty-First AAAI Conference on Artificial Intelligence.
He, D., Song, Y., Jin, D., Feng, Z., Zhang, B., Yu, Z., & Zhang, W. (2021, January). Community-centric graph convolutional network for unsupervised community detection. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence (pp. 3515-3521).
Ivannikova, E., Park, H., Hämäläinen, T., & Lee, K. (2018). Revealing community structures by ensemble clustering using group diffusion. Information Fusion, 42, 24-36.
Jia, Y., Zhang, Q., Zhang, W., & ang, X. (2019, May). Communitygan: Community detection with generative adversarial nets. In The World Wide Web Conference (pp. 784-794).
Jin, D., Gabrys, B., & Dang, J. (2015). Combined node and link partitions method for finding overlapping communities in complex networks. Scientific reports, 5 (1), 1-8.
Jin, D., Ge, M., Li, Z., Lu, W., He, D., & Fogelman-Soulie, F. (2017, November). Using deep learning for community discovery in social networks. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 160-167). IEEE.
Jin, D., Liu, Z., Li, W., He, D., & Zhang, W. (2019, July). Graph convolutional networks meet markov random fields: Semi-supervised community detection in attribute networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 152-159).
Kanawati, R. (2014, August). YASCA: an ensemble-based approach for community detection in complex networks. In International Computing and Combinatorics Conference (pp. 657-666). Springer, Cham.
Li, Y., Han, Q., & Liu, J. (2019, November). Community Detection based on Autoencoder Reconstruction Similarity Matrix. In Journal of Physics: Conference Series (Vol. 1345, No. 3, p. 032055). IOP Publishing.
Liu, C., Liu, J., & Jiang, Z. (2014). A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE transactions on cybernetics, 44 (12), 2274-2287.
Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C.,... & Yu, P. S. (2020). Deep learning for community detection: progress, challenges and opportunities. arXiv preprint arXiv:2005. 08225.
Liu, R., Wang, H., & Yu, X. (2018). Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Information Sciences, 450, 200-226.
Liu, J. (2010, October). Comparative analysis for k-means algorithms in network community detection. In International Symposium on Intelligence Computation and Applications (pp. 158-169). Springer, Berlin, Heidelberg.
Lusseau, D., & Newman, M. E. (2004). Identifying the role that animals play in their social networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271 (suppl_6), S477-S481.
Mahmood, A., & Small, M. (2015). Subspace based network community detection using sparse linear coding. IEEE Transactions on Knowledge and Data Engineering, 28 (3), 801-812.
Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69 (6), 066133.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582.
Salehi, S. M., & Pouyan, A. A. (2020). Detecting overlapping communities in social networks using deep learning. International Journal of Engineering, 33 (3), 366-376.
Shchur, O., & Günnemann, S. (2019). Overlapping community detection with graph neural networks. arXiv preprint arXiv:1909. 12201.
Souravlas, S., Anastasiadou, S., & Katsavounis, S. (2021). A Survey on the Recent Advances of Deep Community Detection. Applied Sciences, 11 (16), 7179.
Sperlí, G. (2019, April). A deep learning based community detection approach. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (pp. 1107-1110).
Su, X., Xue, S., Liu, F., Wu, J., Yang, J., Zhou, C.,... & Yu, P. S. (2021). A Comprehensive Survey on Community Detection with Deep Learning. arXiv preprint arXiv:2105. 12584.
Tian, F., Gao, B., Cui, Q., Chen, E., & Liu, T. Y. (2014, June). Learning deep representations for graph clustering. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 28, No. 1).
Wang, F., Zhang, B., Chai, S., & Xia, Y. (2018). Community detection in complex networks using deep auto-encoded extreme learning machine. Modern Physics Letters B, 32 (16), 1850180.
Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., & Zhang, C. (2019). Attributed graph clustering: A deep attentional embedding approach. arXiv preprint arXiv:1906. 06532.
Wang, F., Zhang, B., & Chai, S. (2019). Deep auto-encoded clustering algorithm for community detection in complex networks. Chinese Journal of Electronics, 28 (3), 489-496.
Wu, L., Zhang, Q., Chen, C. H., Guo, K., & Wang, D. (2020). Deep learning techniques for community detection in social networks. IEEE Access, 8, 96016-96026.
Xie, Y., Gong, M., Wang, S., & Yu, B. (2018). Community discovery in networks with deep sparse filtering. Pattern Recognition, 81, 50-59.
Xie, Y., Wang, X., Jiang, D., & Xu, R. (2019). High-performance community detection in social networks using a deep transitive autoencoder. Information Sciences, 493, 75-90.
Xin, X., Wang, C., Ying, X., & Wang, B. (2017). Deep community detection in topologically incomplete networks. Physica A: Statistical Mechanics and its Applications, 469, 342-352.
Xu, R., Che, Y., Wang, X., Hu, J., & Xie, Y. (2020). Stacked autoencoder-based community detection method via an ensemble clustering framework. Information sciences, 526, 151-165.
Yang, J., McAuley, J., & Leskovec, J. (2013, December). Community detection in networks with node attributes. In 2013 IEEE 13th international conference on data mining (pp. 1151-1156). IEEE.
Yang, L., Cao, X., He, D., Wang, C., Wang, X., & Zhang, W. (2016, July). Modularity Based Community Detection with Deep Learning. In IJCAI (Vol. 16, pp. 2252-2258).
Yang, T., Jin, R., Chi, Y., & Zhu, S. (2009, June). Combining link and content for community detection: a discriminative approach. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 927-936).
Ye, F., Chen, C., & Zheng, Z. (2018, October). Deep autoencoder-like nonnegative matrix factorization for community detection. In Proceedings of the 27th ACM international conference on information and knowledge management (pp. 1393-1402).
Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33 (4), 452-473.
Zhang, Y., Xiong, Y., Ye, Y., Liu, T., Wang, W., Zhu, Y., & Yu, P. S. (2020, August). SEAL: Learning Heuristics for Community Detection with Generative Adversarial Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1103-1113).
References [In Persian]
Ghasempoor, M., Seifi, A., & Alizadeh, H. (2019). Recognition of communities in social networks. The second national industrial and systems engineering conference, Isfahan, https://civilica. com/doc/251290
Hosseinian, A. H., Teimourpour, B., & Jamali Hondori, B. (2019). A Hybrid Algorithm for Detecting Communities of Social Networks based on the Modularity Density Criterion. Business Intelligence Management Studies, 8(29), 61-86. doi: 10.22054/ims.2019.10376
Kosari Langari, R., Sardar, S., Amin Mousavi, S. A., & Radfar, R. (2019). A Model to Publish Online Social Networks Data with Privacy Preserving. Business Intelligence Management Studies, 8(29), 87-112. doi: 10.22054/ims.2019.10377
Rohan, S., Amirian, S., & Mohammadian, A. (2017). Identification and Ranking of Social Mining Applications in E-Commerce. Business Intelligence Management Studies, 6(21), 1-32. doi: 10.22054/ims.2018.8510
Roshani, S., Rezaeenik, N., & Shojaei, S. M. H. (2013). A comparative study of Usability and Sociability Of public and specialized social networking websites. Business Intelligence Management Studies, 2(5), 97-132.
Shoar, M., & Salarnezhad, A. A. (2018). A New Method to Cluster HTML Documents Using Mixed Algorithms. Business Intelligence Management Studies, 6(24), 37-62. doi: 10.22054/ims.2018.8891