مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران

2 دانشیار، مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران.

3 کارشناس ارشد، مدیریت فناوری اطلاعات، دانشکده مدیریت، دانشگاه علامه طباطبائی، تهران.

چکیده

 در این پژوهش به‌منظور ارزیابی عملکرد سیستم مدیریت دانش به‌عنوان یکی از مهم‌ترین زیرساخت‌های بهبود دهنده عملکرد و یادگیری سازمانی در شرکت‌های نرم‌افزاری، بر مبنای رویکرد سیستم استنتاج فازی اقدام به طراحی سیستم و ارزیابی شده است. در این راستا ابتدا ورودی­های سیستم که درواقع شاخص­های ارزیابی عملکرد سیستم مدیریت دانش هستند، استخراج شدند. سپس قواعد اگر-آنگاه با نظر خبرگان تعیین شده و وارد پایگاه قواعد فازی گردید. خروجی سیستم نیز در راستای عملکرد سیستم مدیریت دانش تعریف گردید. سیستم طراحی شده، با ارائه یک ارزیابی جامع از سیستم مدیریت دانش می­تواند به سازمان­ها در جهت شناخت نقاط ضعف و قوت، جایگاه فعلی و اتخاذ تصمیمات آتی برای بهبود عملکرد یاری رساند. به‌منظور اعتبارسنجی سیستم استنتاج فازی، مقایسه­ای بین خروجی سیستم و نظر خبرگان به عمل آمد. با توجه به اختلاف ناچیز بین میانگین نظر خبرگان و خروجی سیستم می‌توان بیان داشت که سیستم از دقت و اعتبار مطلوبی برای ارزیابی‌های آتی برخوردار است.
 
 

کلیدواژه‌ها

عنوان مقاله [English]

A Fuzzy Inference System for Evaluating the Performance of Knowledge Management System in Software Development Industry

نویسندگان [English]

  • Imani Raeesi Vanan 1
  • Mohammad Reza Taghva 2
  • Delnia Amir Ashayeri 3

1 Assistant Professor, Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran

2 Associate Professor, Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran

3  MA, Information Technology Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran

چکیده [English]

 
In this research, for the purpose of evaluating the performance of knowledge management systems as an improving infrastructure for organizational learning and performance in software development industry, a fuzzy inference system is designed and evaluated. At first, input variables were extracted as the performance evaluators of knowledge management system. Then, if-then rules were identified through the utilization of experts’ opinions and inserted to the fuzzy rule-base. The output of inference system was also designed for performance evaluation of knowledge management system. The designed system, through a comprehensive assessment of knowledge management systems, can enable organizations to identify the strengths, weaknesses, current condition, and future decisions making for the purpose of performance improvement. For the validation of fuzzy inference system, a comparison was made between system outputs and experts viewpoints. Considering the very small difference between the average of experts’ opinions and system output, it can be stated that the system has an appropriate precision and validity for future assessment.

کلیدواژه‌ها [English]

  • Knowledge Management System
  • Fuzzy Inference System
  • Performance evaluation
  • Software Development Industry
 
جامی پور، مونا و شرکت، محمدحسین (1394)، "چالش پیاده‌سازی موفق سیستم‌های مدیریت دانش: بررسی عوامل مؤثر بر پذیرش مدیریت دانش در سازمان‌های ایرانی با رویکردی آمیخته "، مدیریت فناوری اطلاعات، دوره 7، شماره 2، ص 429-450.
رسولی. هاتف، مانیان. امیر (1391)، «طراحی سیستم استنتاج فازی برای انتخاب خدمات بانکداری الکترونیک (مطالعه موردی بانک سپه)»، مدیریت فناوری اطلاعات، دوره 4، شماره 12، صص 64-41
سهرابی بابک، شامی زنجانی مهدی، فرزانه ماندانا و رئیسی وانانی ایمان. (1391). ارائه سیستمی برای ارزیابی میزان موفقیت پیاده‌سازی سیستم برنامه‌ریزی منابع سازمان بر مبنای رویکرد استنتاج فازی. پژوهش‌های مدیریت در ایران، دوره 16، شماره 3: 105-130.
شفاعت. عشرت، شامی زنجانی. مهدی، پیله‌وری سلماسی. نازنین (1390)، «ارائه مدلی برای ارزیابی توانمندسازهای مدیریت دانش در بانک پاسارگاد با استفاده از سیستم استنتاج فازی»، پژوهش‌های مدیریت منابع سازمانی، دوره 1، شماره 4، صص 123-101
صارمی. محمود، حیدری. علی، (1389)، «ارائه رویکردی کیفی برای مدل‌سازی توان رقابتی بنگاه در کسب‌وکارهای مبتنی بر فناوری پیشرفته: موردمطالعه صنعت نرم‌افزار»، مدیریت فناوری اطلاعات، دوره 2، شماره 5، صص 70-53
مؤمنی، منصور و جام پرازمی، مونا و حسین زاده، مهناز و مهرافروز، محسن. (1390). ارایه رویکرد جدیدی برای ارزیابی سیستم‌های مدیریت دانش با روش تحلیل رابطه‌ای خاکستری. نشریه مدیریت تولید و عملیات، دوره 2، شماره 2:55-72
Ale, M., Toledo, C., Chiotti, O., Galli, M. (2014). A conceptual model and technological support for organizational knowledge management. Science of Computer Programming, 95(1): 73-92.
Bixler, C. H. (2002). Applying the four pillars of knowledge management. Km World, 11(1), 10-20.
Busi, M., & Bititci, U. S. (2006). Collabora4tive performance management: present gaps and future research. International Journal of Productivity and Performance Management, 55(1), 7-25.
Büyüközkan, G., Feyzioglu, O., & Çifçi, G. (2011). Fuzzy multi-criteria evaluation of knowledge management tools. International Journal of Computational Intelligence Systems, 4(2), 184-195.
Chang, T. H., & Wang, T. C. (2009). Using the fuzzy multi-criteria decision making approach for measuring the possibility of successful knowledge management. Information Sciences179(4), 355-370.
Chen, L., & Fong, P. S. (2015). Evaluation of knowledge management performance: An organic approach. Information & Management, 52(4), 431-453.
Dimitrijevic, L. R. (2014). Risk assessment of knowledge management system. Online Journal of Applied Knowledge Management, 3(2), 114–126.
Donate, M. J., & Guadamillas, F. (2010). The effect of organizational culture on knowledge management practices and innovation. Knowledge and Process Management, 17(2), 82-94.
Ehms, K., & Langen, M. (2002). Holistic development of knowledge management with KMMM. Siemens AG, 1-8.
Frost, A. (2014). A synthesis of knowledge management failure factors. Retrieved July 2005 from ⟨www.Knowledge-management-tools.net/failure.html⟩.
Hevner, A. R. (2007). A three cycle view of design science research.Scandinavian journal of information systems, 19(2), 4.
Hung, Y. H., Chou, S. C. T., & Tzeng, G. H. (2011). Knowledge management adoption and assessment for SMEs by a novel MCDM approach. Decision support systems, 51(2), 270-291.
Huo, M., & Zhu, L. (2014). Performance Evaluation System of Enterprise Knowledge Management based on Balanced Scorecard. Business and Management Research, 3(3), p15.
Jennex, M., & Olfman, L. (2005). Assessing knowledge management success. International Journal of Knowledge Management (IJKM), 1(2), 33-49.
Jennex, M. E., Smolnik, S., & Croasdell, D. T. (2009). Towards a consensus knowledge management success definition. Vine, 39(2), 174-188.
Lee, C. S., & Wong, K. Y. (2016). Evaluating Knowledge Management Processes: A Fuzzy Logic Approach. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2)
Lee, J. C., Shiue, Y. C., & Chen, C. Y. (2016). Examining the impacts of organizational culture and top management support of knowledge sharing on the success of software process improvement. Computers in Human Behavior, 54, 462-474.
Li, M., Jin, L., & Wang, J. (2014). A new MCDM method combining QFD with TOPSIS for knowledge management system selection from the user's perspective in intuitionistic fuzzy environment. Applied soft computing, 21, 28-37.
Lindner, F., & Wald, A. (2011). Success factors of knowledge management in temporary organizations. International Journal of project management, 29(7), 877-888.
LIUXue-jun, P. E. N. G. (2005). Yi (Sichuan University, Chengdu610065, China)(Chongqing University of Posts and Telecommunications, Chongqing400065, China); Fuzzy AHP method of comprehensive evaluation of knowledge management systems [J]. Journal of Academic Library and Information Science, 2.
López, S. P., Peón, J. M. M., & Ordás, C. J. V. (2009). Information technology as an enabler of knowledge management: An empirical analysis. In Knowledge Management and Organizational Learning (pp. 111-129). Springer US.
Maditinos, D. chatzoudes, D. Tsairidis, C.and Theriou, G., (2011). The Impact ofIntellectual Capital on Firms, Market Valueand Financial Performance, Journal ofIntellectual Capital, vol. 12(1).
Makhsousi, A., Sadaghiani, J., & Amiri, M. (2013). A review on recent advances on knowledge management implementations. Management Science Letters, 3(3), 861-866.
Migdadi, M. (2009). Knowledge management enablers and outcomes in the small-and-medium sized enterprises. Industrial Management & Data Systems, 109(6), 840-858.
Ngai, E. W., & Chan, E. W. C. (2005). Evaluation of knowledge management tools using AHP. Expert systems with applications, 29(4), 889-899.
Patil, S. K., & Kant, R. (2014). A hybrid approach based on fuzzy DEMATEL and FMCDM to predict success of knowledge management adoption in supply chain. Applied Soft Computing, 18, 126-135.
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of management information systems, 24(3), 45-77.
Şen, C. G., & Baraçlı, H. (2010). Fuzzy quality function deployment based methodology for acquiring enterprise software selection requirements. Expert Systems with Applications, 37(4), 3415-3426.
Sharda, R., Delen, D., & Turban, E. (2014). Business intelligence and analytics: systems for decisi4won support (10th ed.). USA: Prentice Hall. ISBN-10: 0133050904.
Sher, P. J., & Lee, V. C. (2004). Information technology as a facilitator for enhancing dynamic capabilities through knowledge management. Information & management, 41(8), 933-945.
Touré, C., Michel, C., & Marty, J. C. (2016). Re-designing knowledge management systems: Towards user-centred design methods integrating information architecture. arXiv preprint arXiv:1601.08032.‏
Wang, J., Ding, D., Liu, O., & Li, M. (2016). A synthetic method for knowledge management performance evaluation based on triangular fuzzy number and group support systems. Applied Soft Computing39, 11-20.
Wang, T. C., & Chang, T. H. (2007). Forecasting the probability of successful knowledge management by consistent fuzzy preference relations. Expert Systems with Applications32(3), 801-813.
Wang, Y., & Zheng, J. (2010). Knowledge management performance evaluation based on triangular fuzzy number. Procedia Engineering, 7, 38-45
Wu, Y., & Zhu, W. (2012). An integrated theoretical model for determinants of knowledge sharing behaviours. Kybernetes, 41(10), 1462-1482.