مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه کامپیوتر و فناوری اطلاعات، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران

2 استادیار، گروه مهندسی کامپیوتر و فناوری اطلاعات، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران(نویسنده مسئول: itm.tamjid@gmail.com )

3 استادیار، گروه مهندسی کامپیوتر و فناوری اطلاعات، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران

چکیده

بانک‌ها دارای فرایندهایی پیچیده، طولانی و فعالیت‌هایی با نقاط کنترل و تایید زیاد به ویژه برای ارائه ‌تسهیلات هستند. بقاء این موسسات، ارائه خدمات با کیفیت و سریع و جلب رضایت مشتری مستلزم بهبود و تحلیل نتایج پس از اجرای این فرایندهاست. در این راستا، هدف اصلی این پژوهش تحلیل عملکرد و بهبود فرایندهای ارائه ‌تسهیلات سرمایه در گردش است. به این منظور از روش مبتنی بر فرایندکاوی و الگوریتم ‌فازی استفاده می‌شود. روش مذکور شامل شش مرحله استخراج داده‌های‌ رخداد سیستم ارائه تسهیلات بانک صنعت و معدن، بازرسی ‌داده‌ها، تحلیل‌ جریان ‌کار، تحلیل ‌عملکرد بر پایه شاخص‌ زمان، ارائه پیشنهادها و بررسی نتایج و در نهایت بهبود فرایند مبتنی بر شبیه‌سازی است.
از جمله نتایج تحقیق حاضر کشف مدل فرایند واقعی و بهبود یافته، تشخیص فعالیتهای گلوگاه و پرتکرار، کاهش متوسط ‌زمان انجام فرایند به میزان 23 درصد و تعداد فعالیتها به میزان 21 درصد و در نهایت تایید کارآمدی فرایندکاوی است

کلیدواژه‌ها

عنوان مقاله [English]

Performance Analysis and Improvement of Bank of Industry and Mine Working Capital Facility Processes Based on Process Mining Approach

نویسندگان [English]

  • ehsan allah Khoshkhoy Nilash 1
  • Alireza Tamjid Yamechlo 2
  • Roya Rad 3

1 M.Sc. Student, Department of Computer Engineering and IT, Parand Branch, Islamic Azad University, Parand, Iran

2 Assistant Professor, Ph.D. Department of Computer Engineering and IT, Parand Branch, Islamic Azad University, Parand, Iran(Corresponding Author: itm.tamjid@gmail.com)

3 Assistant Professor, Ph.D. Department of Computer Engineering and IT, Parand Branch, Islamic Azad University, Parand, Iran

چکیده [English]

Banks have complex, long processes and activities with many points of control and approval, especially for facility processes. The survival of these institutions, providing quality and fast services and customer satisfaction requires improvement and analysis of results after the implementation of these processes. The main purpose of this study is to analyze the performance and improve the working capital facility processes. For this purpose, a method based on process mining and fuzzy algorithm is used. The method includes six steps: log extraction of the Bank of Industry & Mine facility system, log inspection, control flow analysis, performance analysis based on time indicator, making suggestions and reviewing the results, and finally improving the processes using simulation.
The results of the present study include the discovery of a real and improved process model, the detection of bottlenecks and max repetition activities, the reduction of the mean throughput time by 23% and the number of activities by 21%, and finally the efficiency of process mining.

کلیدواژه‌ها [English]

  • working capital facility processes
  • process mining
  • performance analysis
  • process improvement
جعفری جنیدی، مهدی و ستایشی، سعید. (2019). تأثیر سبک‌شناختی بر درک‌پذیری مدل‌های فرایند کسب‌وکار. مطالعات مدیریت کسب‌وکار هوشمند، 7(28)، 134-111.
یزدانی، حمیدرضا؛ جلالی، نیلوفر و مؤذنی، بهرام. (2018). مدل آمادگی تغییر سازمانی جهت پیاده‌سازی فرآیندهای کسب‌وکار. مطالعات مدیریت کسب‌وکار هوشمند، 7(25)، 118-85.
References
Bagheri, E., Rios, P., Pourmasoumi, A., Robson, R. C., Hwee, J., Isaranuwatchai, W., & Tricco, A. C. (2018). Improving the conduct of systematic reviews: a process mining perspective. Journal of clinical epidemiology,103, 101-111.
Blevi, L., Delporte, L., & Robbrecht, J. (2017). Process mining on the loan application process of a Dutch Financial Institute. BPI Challenge, 328-343.
Cho, M., Song, M., Comuzzi, M., & Yoo, S. (2017). Evaluating the effect of best practices for business process redesign: An evidence-based approach based on process mining techniques. Decision Support Systems, 104, 92-103.
Dakic, D., Stefanovic, D., Cosic, I., Lolic, T., Medojevic, M., & Katalinic, B. (2018). Business process mining application: a literature review. Paper presented at the Proceedings of the 29th DAAAM International Symposium.
De Leoni, M., Suriadi, S., Ter Hofstede, A. H. M., & Van Der Aalst, W. M. P. (2016). Turning event logs into process movies: animating what has really happened. Software & Systems Modeling, 15(3), 707-732.
De Leoni, M., & Van Der Aalst, W. M. P. (2013). Data-aware process mining: discovering decisions in processes using alignments. Paper presented at the Proceedings of the 28th annual ACM symposium on applied computing.
De Medeiros, A. K. A., & Van Der Aalst, W. M. P. (2008). Process mining towards semantics. Advances in Web Semantics,35-80.
De Weerdt, J., De Backer, M., V., Jan, & Baesens, B. (2012). A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Information systems, 37(7), 654-676.
De Weerdt, J., Schupp, A., Vanderloock, A., & Baesens, B. (2013). Process Mining for the multi-faceted analysis of business processes—A case study in a financial services organization. Computers in Industry, 64(1), 57-67.
Günther, C. W, & Van Der Aalst, W. M. P. (2007). Fuzzy mining–adaptive process simplification based on multi-perspective metrics. Paper presented at the International conference on business process management.
Joneidi Jafari, M., & Setayeshi, S. (2019). The Effect of Cognitive Style on the Understandability of Business Process Models. IT Management Studies, 7(28), 111-134. [In Persian]
Jans, M., Van Der Werf, J. M., Lybaert, N., & Vanhoof, K. (2011). A business process mining application for internal transaction fraud mitigation. Expert Systems with Applications, 38(10),13351-359.
Kouzari, E., & Stamelos, I. (2018). Process mining applied on library information systems: A case study. Library & Information Science Research,40(4-3),245-254.
Low, W. Z., Van Der Aalst, W. M. P., Ter Hofstede, A. H. M., Wynn, M. T., & De Weerdt, J. (2017). Change visualisation: Analysing the resource and timing differences between two event logs. Information systems, 65, 106-123.
Maaradji, A., Dumas, M., La Rosa, M., & Ostovar, A. (2017). Detecting sudden and gradual drifts in business processes from execution traces. IEEE Transactions on Knowledge and Data Engineering,29(10),2140-2154.
Mahendrawathi, E. R., Arsad, N., Astuti, H. M., Kusumawardani, R. P., & Utami, R. A. (2018). Analysis of production planning in a global manufacturing company with process mining. Journal of Enterprise Information Management, 31(2), 317-337.
Mahmood, T., & Shaikh, G. M. (2013). Adaptive automated teller machines. Expert Systems with Applications, 40(4), 1152-1169.
Măruşter, L., & Van Beest, N. (2009). Redesigning business processes: a methodology based on simulation and process mining techniques. Knowledge and Information Systems,21(3),267.
Rahmawati, D., Sarno, R., Fatichah, C., & Sunaryono, D. (2017). Fraud detection on event log of bank financial credit business process using Hidden Markov Model algorithm. Paper presented at the 32017rd International Conference on Science in Information Technology (ICSITech).
Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information systems,37(2), 99-116.
Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of biomedical informatics, 61,224-236.
Schuh, G., Gützlaff, A., Schmitz, S., & Van Der Aalst, W. M. P. (2020). Data-based description of process performance in end-to-end order processing. CIRP Annals.
Song, M., Choi, I., Kim, K., & Van Der Aalst, W. M. P. (2008). Deriving social relations among organizational units from process models. Eindhoven: Technische Universiteit Eindhoven.
Suriadi, S., Andrews, R., Ter Hofstede, A. H. M., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. Information systems,64, 132-150.
Van DeR Aalst, W. (2010). Process discovery: Capturing the invisible. IEEE Computational Intelligence Magazine, 5(1), 28-41.
Van Der Aalst, W. (2012). Process mining: Overview and opportunities. ACM Transactions on Management Information Systems (TMIS), 3(2), 1-17.
Van Der Aalst, W. (2016). Data science in action. In Process mining, 30-35.
Van Der Aalst, W., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., & Buijs, J. (2011). Process mining manifesto. Paper presented at the International Conference on Business Process Management.
van der Aalst, W. M. P. (2012). What makes a good process model? Software & Systems Modeling,11(4), 557-569.
Van Der Aalst, W. M. P. (2015). Business process simulation survival guide. In Handbook on Business Process Management,1, 337-370.
van der Aalst, W. M. P. (2018). Process discovery from event data: Relating models and logs through abstractions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,8(3), 1244.
van der Aalst, W. M. P., & Gunther, C. W. (2007). Finding structure in unstructured processes: The case for process mining. Paper presented at the Seventh International Conference on Application of Concurrency to System Design.
Werner, Ml. (2017). Financial process mining-Accounting data structure dependent control flow inference. International Journal of Accounting Information Systems, 25, 57-80.
Yazici, I. E., & Engin, O. (2019). Use of Process Mining in Bank Real Estate Transactions and Visualization with Fuzzy Models. Paper presented at the International Conference on Intelligent and Fuzzy Systems.
Valle, A.M., Santos, E.A., & Loures, E. R. (2017). Applying process mining techniques in software process appraisals. Information and software technology, 87, 19-31.
Dunzer, S., (2019). Conformance checking: a state-of-the-art literature review. in Proceedings of the 11th international conference on subject-oriented business process management.
Maita, A. R. C. (2018). A systematic mapping study of process mining. Enterprise Information Systems, 12(5), 505-549.
Zerbino, P., Stefanini, A., & Aloini, D. (2021). Process science in action: A literature review on process mining in business management. Technological Forecasting and Social Change, 172, 121021.
Werner, M., Wiese, M., & Maas, A. (2021). Embedding process mining into financial statement audits. International Journal of Accounting Information Systems, 41, 100514.
Yazdani, H., Jalali, N., & Moazeni, B. (2018). An Organizational Change Readiness Model to Implement Business Processes. IT Management Studies, 7(25), 85-118. [In Persian]
 
 
 
 
 
 
استناد به این مقاله: خوشخوی نیلاش، احسان الله، تمجید یامچلو، علیرضا، راد، رؤیا. (1400). تحلیل عملکرد و بهبود فرایندهای ارائه تسهیلات سرمایه در گردش بانک صنعت و معدن با رویکرد فرایندکاوی، مطالعات مدیریت کسب وکار هوشمند، 9(36)، 37-70.                   DOI: 10.22054/IMS.2021.58106.1896
 Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..ر