مطالعات مدیریت کسب و کار هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری اطلاعات، گروه مدیریت صنعتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه مدیریت صنعتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه مدیریت صنعتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

تلاش این مقاله در جهت حل یکی از مشکلات اصلی حوزه ی بانکداری می باشد که ارتباط تنگاتنگی با حوزه ی فناوری اطلاعات دارد. ترکیب بحث مدیریتی این موضوع با حیطه ی فناوری اطلاعات یکی از مباحث مهم حوزه ی مدیریت فناوری اطلاعات را رقم خواهد زد.هدف اساسی این مقاله، خوشه بندی مشتریان بانک است.
در ابتدا، تمامی ویژگی های مشتریان از پایگاه داده ی بانک استخراج گردیده که استخراج برای 900 هزار مشتری و به طور تصادفی انجام گرفته است که به عنوان ورودی در اختیار روش پیشنهادی این مقاله قرار خواهد گرفت. تمامی ویژگی-های این مشتریان استخراج شد و با استفاده از نظرات کارشناسان 10 ویژگی (به جز چهار ویژگی روش LRFM) لیست گردید. روش پیشنهادی باید از بین این 10 ویژگی بتواند ویژگی‌هایی را برای خوشه بندی مشتریان انتخاب کند که تفکیک پذیری بیش تری را در خوشه بندی نتیجه دهد. با توجه به تعداد بالای حالات این مساله، امکان انجام دستی آن وجود ندارد و روش پیشنهادی سعی می کند با بررسی حالات مختلف، برای مشتریان هر بانک الگوی مجزایی را برای خوشه بندی ارایه دهد. همچنین، مشکل انتخاب مقدار مناسب برای تعداد خوشه‌ها در روش K-میانگین به وسیله‌ی روش پیشنهادی این مقاله برطرف می گردد. نتایج حاصل، نشان از بهبود آن نسبت به روشRFM و‌LRFM پایه دارد.
کلمات کلیدی:مدیریت ارتباط با مشتریان بانک،خوشه بندی، مدل RFM،مدل LRFM، الگوریتم ازدحام ذرات، روش K-میانگین.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Improved LRFM model for clustering based on particle swarm optimization algorithm and K-means clustering

نویسندگان [English]

  • Mohammad Kazemi 1
  • Mohammad Ali Keramati 2
  • Mehrzad Minooie 3

1 Ph.D. Student, Department of Industrial Management, Central Tehran Branch, Islamic Azad University,Tehran.iranDeputy Director General Of Modern Banking Services Dept

2 Associate professor, Department of Industrial Management,KeramatiCentral Tehran Branch, Islamic Azad University,Tehran.iran

3 Assistant professor, Department of Industrial Management,Central Tehran Branch, Islamic Azad University,Tehran.iran

چکیده [English]

The effort of this article is to solve one of the main problems in the field of banking, which is closely related to the field of information technology. The combination of the management discussion of this topic with the field of information technology will be one of the important topics in the field of information technology management. The main goal of this article is the clustering of bank customers.
At first, all customer characteristics were extracted from the bank's database, which was randomly extracted for 900,000 customers, which will be provided as input to the proposed method of this article. All the characteristics of these customers were extracted and 10 characteristics (except four characteristics of the LRFM method) were listed using the opinions of experts. The proposed method should be able to choose among these 10 features for clustering customers, which results in more resolution in clustering. Due to the high number of cases of this problem, it is not possible to do it manually, and the proposed method tries to provide a separate model for clustering for the customers of each bank by examining different cases. Also, the problem of choosing the right value for the number of clusters in the K-means method is solved by the method proposed in this article. The results show that it is better than the basic RFM and LRFM methods.
Keywords: relationship management with bank customers, clustering, RFM model, LRFM model, particle swarm algorithm, K-means method.

کلیدواژه‌ها [English]

  • clustering
  • LRFM model
  • particle swarm algorithm
  • K-means method