مطالعات مدیریت کسب و کار هوشمند

نویسندگان

1 عضو هیئت‌علمی، گروه مدیریت صنعتی، دانشکده ادبیات و علوم انسانی، دانشگاه خلیج‌فارس، بوشهر.(نویسنده مسئول)؛ gjamali@pgu.ac.ir

2 عضو هیئت‌علمی، گروه حسابداری، دانشکده ادبیات و علوم انسانی، دانشگاه خلیج‌فارس، بوشهر

3 کارشناس ارشد، مدیریت صنعتی، دانشکده ادبیات و علوم انسانی، دانشگاه خلیج‌فارس، بوشهر

چکیده

هدف این پژوهش، تحلیل ارتباط میان شاخص­های کاربرد اینترنت اشیاء در زنجیره تأمین لوازم خانگی با استفاده از رویکرد نقشه­ شناختی فازیاست. جامعه آماری، کارشناسان فعال در کسب‌وکار لوازم خانگی در استان بوشهر بوده­اند. این افراد، با مفهوم اینترنت اشیاء و زنجیره تأمین آگاه بوده که از بین آن­ها 10 نفر به­عنوان نمونه انتخاب شدند. ابتدا، با مطالعه پیشینه و مبانی نظری پژوهش 38 شاخص شناسایی شدند. سپس، با استفاده از تکنیک دلفی و نظر خبرگان در 9 گروه شامل: محصول، فرآیندهای عملیاتی، موجودی، اقتصادی، تأمین‌کنندگان، پشتیبانی فنی، اطلاعات، مشتری و مأموریت سازمان دسته­بندی شدند. در مرحله بعد، با استفاده از آزمون میانگین یک جامعه شاخص­هایی که مقدار آن­ها از ارزش آزمون کمتر بود حذف شدند. در نهایت، با استفاده از رویکرد ترکیبی نقشه شناختی فازی و گروه کانونی، چگونگی ارتباط میان شاخص­ها تحلیل و تبیین شد. نتایج، نشان داد که ارتباط میان همه شاخص­ها مثبت بوده است. همچنین، اطلاعات به­عنوان مهم‌ترین شاخص­ کاربرد اینترنت اشیاء در زنجیره تأمین لوازم خانگی به شمار می­آید، زیرا این شاخص بر همه شاخص­های دیگر اثرگذار است. همچنین، نتایج نشان داد که شاخص مشتری در رتبه دوم اهمیت قرار دارد. در این راستا، مدیران صنعت لوازم خانگی باید با برنامه­ریزی و خودکارسازی بهتر فرآیندها، بهینه­سازی عملیات، بهبود خدمات ارائه‌شده به مشتری و افزایش بازگشت سرمایه در طول زنجیره تأمین موجب افزایش قدرت رقابت در این صنعت شوند.

کلیدواژه‌ها

عنوان مقاله [English]

Analyzing the Relationship Between the Factors of Internet of Things Application in Supply Chain of Home Appliances Industry Using Fuzzy Cognitive Map

نویسندگان [English]

  • Gholamreza Jamali  1
  • Seyyed Esmaeil  Mousavi 2
  • Masoumeh  Mohammadi  3

1 Faculty Member, Department of Industrial Management, Persian Gulf University, Bushehr (Corresponding author: gjamali@pgu.ac.ir)

2  Faculty Member, Department of Accounting, Persian Gulf University, Bushehr,

3  Master’s Student, Department of Industrial Management, Persian Gulf University, Bushehr

چکیده [English]

The aim of this research is to analyze the relationship among Internet of Things (IoT) application factors in supply chain of home appliances industry using Fuzzy Cognitive Map (FCM). The statistical population consisted of experts in home appliance business in Bushehr province. These experts were aware of the concept of IoT and supply chain management, out of which 10 were selected. First, after reviewing the literature 38 factors were identified and then using Delphi technique and experts opinion these factors were classified into 9 groups including: product, operational processes, inventory, economics, suppliers, technical support, information, customer, and organization mission. Using Fuzzy Cognitive Map, the results show that all relationship between IoT application factors was positive and information as the most important factor that directly effects on all other factors. The results also show that customer factor was placed in the second ranked. So, home appliance industry managers should increase their competitive ability by better planning and automating processes, optimizing operations, improving customer services, and increasing capital return across the supply chain.
 

کلیدواژه‌ها [English]

  • Internet of Things
  • Supply Chain
  • Fuzzy Cognitive Map
 Abdel-Basset, M., Manogaran, G., & Mohamed, M. (2018). Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Generation Computer Systems, 86, pp. 614-628.
Arvan, M., Omidvar, A., & Ghodsi, R. (2016). Intellectual capital evaluation using fuzzy cognitive maps: A scenario-based development planning. Expert Systems with Applications, 55, pp. 21-36.
Asher, H. (1983), Causal Modeling. Beverly Hills, CA: Sage Ed.
Axelrod, R. M. (1976), Structure of decision: The cognitive maps of political elites. Princeton University press Princeton, NJ.
Ben-Daya, M., Hassini, E., & Bahroun, Z. (2017). Internet of things and supply chain management: a literature review. International Journal of Production Research, pp. 1-24.
Chen, R. Y. (2015). Intelligent IoT-Enabled System in Green Supply Chain using Integrated FCM Method. International Journal of Business Analytics (IJBAN), 2(3), pp. 47-66.
Ghasemi, R., Mohaghar, A., Safari, H., & Akbari Jokar, M. R., (2016). Prioritizing the Applications of Internet of Things Technology in the Healthcare Sector in Iran: A Driver for Sustainable Development. Journal of Information Technology Management , 8(1), pp. 155-176.
Jayaram, A. (2016, December). Lean six sigma approach for global supply chain management using industry 4.0 and IIoT. In Contemporary Computing and Informatics (IC3I), 2016 2nd International Conference on (pp. 89-94). The Institute of Electrical and Electronics Engineers (IEEE).
Kosko, B. (1985), Adaptive Inference. Monograph. Verac Inc. Technical Report.
Kosko, B. (1986), Fuzzy cognitive maps. International journal of man-machine studies, 24(1), pp. 65-75.
Li, B., & Li, Y. (2017). Internet of things drives supply chain innovation: A research framework. International Journal of Organizational Innovation, 9(3), pp. 71-92.
Lian-yue, W. (2012, June). Think of construction lean SCM based on IOT. In Robotics and Applications (ISRA), 2012 IEEE Symposium on (pp. 436-438). The Institute of Electrical and Electronics Engineers (IEEE).
Lin, D., Lee, C. K. M., & Lin, K. (2016, December). Research on effect factors evaluation of internet of things (IOT) adoption in Chinese agricultural supply chain. In Industrial Engineering and Engineering Management (IEEM), 2016 IEEE International Conference on (pp. 612-615). The Institute of Electrical and Electronics Engineers (IEEE).
Majeed, A. A., & Rupasinghe, T. D. (2017). Internet of Things (IoT) embedded future supply chains for industry 4.0: an assessment from an ERP-based fashion apparel and footwear industry. International Journal of Supply Chain Management, 6(1), pp. 25-40.
Manavalan, E., & Jayakrishna, K. (2019). A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Computers & Industrial Engineering, 127, pp. 925-953.
Mirmohammadian, S. M., Berhlia, S.,  Babamahmoudi, R., & Akhondi, Z., (2017). A Review of Challenges and Solutions to Preventing IoT Challenges. 10th Conference on Modern Research in Science and Technology, pp. 1-11.
Parry, G., Brax, S. A., Maull, R., & Ng, I. (2016). Visibility of consumer context: improving reverse supply with internet of things data. Supply Chain Manag Int J, 21(2), pp. 228-244.
Ranjbar, A., Mousavi, A., & Nazemi, M., (2018). IoT and its application in mining engineering. Journal of Science and Technology Cycle of Yazd University, 3, pp. 53-48.
Rodriguez-Repiso, L., Setchi, R., & Salmeron, J. (2007), Modelling IT projects success with Fuzzy Cognitive Maps. Expert Systems with Applications, 32, pp. 543-559.
Rong, K., Hu, G., Lin, Y., Shi, Y., & Guo, L. (2015). Understanding business ecosystem using a 6C framework in Internet-of-Things-based sectors. International Journal of Production Economics, 159, pp. 41-55.
Suguna, S. K., & Kumar, S. N. (2019). Application of Cloud Computing and Internet of Things to Improve Supply Chain Processes. In Edge Computing (pp. 145-170). Springer, Cham.
Tsang, Y. P., Choy, K. L., Wu, C. H., Ho, G. T. S., Lam, C. H., & Koo, P. S. (2018). An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks. Industrial Management & Data Systems, 118(7), pp. 1432-1462.
Tu, M. (2018). An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management: A mixed research approach. The International Journal of Logistics Management, 29(1), pp. 131-151.
Ung, W. A. N. G., & Kun, L. V. (2010). Research Review of Agile Supply Chain. Logistics Technology, Z1.
Wang, J., & Yue, H. (2017). Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control, 73, pp. 223-229.
Yan, B., & Huang, G. (2009, August). Supply chain information transmission based on RFID and internet of things. In 2009 ISECS International Colloquium on Computing, Communication, Control, and Management (Vol. 4, pp. 166-169). The Institute of Electrical and Electronics Engineers (IEEE).
Zhong, D. R. Y., Tan, P. K., & Bhaskaran, P. G. (2017). Data-driven food supply chain management and systems. Industrial Management & Data Systems, 117(9), pp. 1779-1781.